Development of a network of devices connected through the LIN (Local Interconnect network) bus.

The communication among a high number of electronic devices creates several troubles. The most common being: latency, data errors and high development cost. This lead to the creation of device networks, which objective is to link many devices using as few conductors as possible. This new network should fulfill some requirements such as; efficiency, low cost, and robustness. The need of satisfying such requirements gave place to the construction of the bus of communication. Generally, the automotive industry uses CAN (Controller Area Network), LIN (Local Interconnected network) and FlexRay buses to connect their devices. Each of them are used for a specific application inside of the automobile. The efficient performance of this buses has allowed different industries to incorporate them to their systems. Nowadays CAN and LIN are used in domotic systems, medical equipment, automatization factories, navy electronic, industrial machines control, among others. Moreover, many projects are development in the B105 Electronic Systems Lab where it is necessary to link different actuators and sensors because of this, it has been decided to implement a LIN network.

The Project was composed of a master node and two slaves nodes that interact with each other. The discovery kit STM32F411E DISCO was used to implement the master and the slave node. Finally, the other devices the discovery kit STM32F411E DISCO possess like the diodes led (actuators) and the accelerometers (sensors) were used for the working demonstration.

TFG: High mobility Brigadier General (OF-6) wireless Command and Control Center design applying “Human-Centered Design” methodologies

A high mobility Command and Control Center a the Brigadier General (OF-6) level (PCBRI) contains from twenty to thirty operator workstations. Each workstation consists on a computer connected to SIMACET (Command and Control Spanish Army digital network) and a telephony terminal. According to the PCBRI layout it supposes between three and five kilometers of signal wire.

Each time the PCBRI moves from one location to another one means removing and recabling several kilometers of wire and about three hundred wire connections. On the other hand beyond the work, personnel and material the main problem is the unavailability of the Command and Control Center between jumps and the connections reliability.

The development of a new wireless Command and Control Center was considered as a good challenge for applying “Human-Centerd Design” methodologies and the “Brigada Guadarrama XII” created a working group acting as final user, the Research Group “B105 Electronic Systems Lab” (Universidad Politécnica de Madrid) as technological and methodological partner, the Colegio Universitario de la Defensa (Zaragoza) both as technological and educational partner, the company Teldat and the Escuela Politécnica Superior del Ejército de Tierra as observer for, applying this methodology, develop a prototype to work inside of the PCBRI without wires.

The results of this project, apart of the experience of applying Human-Centered Design and SCRUM methodologies within the Spanish Army, is the development of a prototype of a high mobility Command and Control Center that copes with the demands of the Brigade where time and effort have been fully controlled. Main features are:

  • Phantom Digital system over the SIMACET network (The developed system is transparent to the legacy network)
  • If you look at this website, VoIP phantom system supported by an smart switchboard allowing intelligent routing and voice recording running over a legacy NAVARRA station
  • Electromagnetic shielding with several choices in the binomial cost-attenuation according the mission requirements

TFG: DESIGN AND IMPLEMENTATION OF AN INDOOR POSITIONING SYSTEM TO LOCATE PEOPLE THROUGH A WIRELESS SENSOR NETWORK

A Wireless Sensor Network or WSN is a set of stand-alone devices that communicate with each other wirelessly. These networks consist of devices with low resources and wireless connectivity and are able to monitor different parameters.

Wireless sensor networks are intended for a multitude of environments, whether at an environmental (temperature, humidity), industrial or private (home automation, remote control) level.

The main objective of this project is to locate by means of a WSN to the members of laboratory. This information will be captured through small wireless devices made during this project. This information will be valuable both to know the availability and presence of the members of the laboratory and to optimize other systems such as lighting, air conditioning or common workstations.

The B105 Electronic Systems Lab has an intelligent environment that monitors different environmental aspects such as temperature, luminosity, humidity, etc. In this project it is proposed to develop the hardware and software necessary to detect the position of the members of the laboratory. In this way, each person will carry a device that sends the necessary information to the nodes of the network to position that person. Considerations such as low consumption, communications and data processing will be taken into account. The designed device is shown in the following image.

 The designed device

TFM: Implementation and integration of a chart engine oriented to Big Data and it’s application in domotics

IoT (Internet of Things) and Big Data are very relevant today, and they tend to appear together. This happens because the most accepted definition of of IoT is having a lot of wireless sensors generating data continuously. This requires having the infrastructure to be able to save all the data that is generated in databases. However, this presents a problem when doing queries, since queries in big databases (millions of samples) take a long time to finish. Reducing this time is the objective of the following project.

This project consists of a Web application (making it cross-platform) that allows management of a database using a simple user interface. It is also able to select a small sample of data (independently of the amount of data in the database) and plotting it. Finally, it can also be used to monitor live data. These last two functions are extremely useful in domotics, since the data that’s used in those applications (temperature, pressure) are very easy to interpret when plotted.

Captura representación gráfica
Screenshot of the webpage used to chart data

In order to carry out this project we used MongoDB, a NoSQL database. This type of databases have big advantages over traditional SQL databases when taking into account the type of data we are going to store, mainly faster speed and more flexibility. For the web server we used NodeJS, this way all the code written for this project is Javascript, both server-side, using ExpressJS to simplify the development, and client-side, using the native API calls for web manipulation present in most modern web browsers.

Lastly, one of the biggest advantages of our project is the ability to add data to the database sending a HTTP request to a certain URL. With this we can save any type of data from any sensor easily, the only requirement is having a node that supports IP in order to send the HTTP request, which is something very common nowadays.

TFG: Design and development of a reliable routing protocol for Wireless Sensor Networks

Wireless Sensor Networks, or WSN, is one of the most promising fields of research when talking about Information Technology, as its use and deployment is extended in developing projects related to Internet of Things.

WSN are composed by multiple wireless tiny sensor nodes called motes, which are equipped with a microcontroller and some sensors capable to measure physical data of the parameter to be monitored. They also feature one or several radio antennas, meant to share the gathered data with the rest of the sensor nodes in the network.

Many projects have been developed using WSN, all of them with the common characteristic of the need of sharing data among nodes. This is achieved by the implementation of a network protocol on the nodes.

Different research lines have been followed and scientific papers have been published related to the field of WSN network protocols, most of them focused on the creation of algorithms and theoretical work rather than on field implementation and actual deployment of the network protocol on physical nodes.

multihop
Multihop packet sending between nodes on WSN

The final objective of this thesis is the development of a realiable routing protocol for WSN, which is meant to establish routes among the nodes which later will be used as paths for sending and receiving data. It will be ready to use for stablishing networks on any project based on WSN developed by the B105 Electronic Systems Lab Research Group, regardless of its application or purpose. Multihop will be one of the main features on this routing protocol.

This protocol has been designed to be reliable, customizable and adaptable to the different needs a WSN developer may have. Its code is portable to different motes, and has been developed as a process running within the FreeRTOS operating system, which is node sensor oriented. Besides, the Contiki netstack, Rime, and its customized layer of communication services provided by the B105 Electronic Systems Lab, have been the main sources of primitive communication modules used on the development of this routing protocol.