Imposición de la medalla de Académico Correspondiente de la ACAMI

Imposición de la medalla de Académico Correspondiente con número de silla 64 de la Academia de las Ciencias y las Artes Militares a nuestro compañero Octavio Nieto-Taladriz García.

El pasado 28 de Septiembre tuvo lugar el acto solemne de entrega de las medallas de Académicos Correspondientes de la Academia de las Ciencias y las Artes Militares a los académicos incorporados durante los años 2020 y 2021, ya que el último acto tuvo lugar el 2019 debido a la pandemia.

El acto fue presidido por el Presidente de la Academia, GE Jaime Domíngez Buj y durante el mismo se impuso la medalla correspondiente a la silla 64 a nuestro compañero Octavio Nieto-Taladriz García, que se adscribe a la sección de Prospectiva de la Tecnología Militar, liderada por el VA Jesús Manrique Braojos.

Tecnologías de ciclo corto y metodologías ágiles para defensa. Definiciones, ejemplos de aplicación y resultados reales (I)

Introducción:

En el campo civil y sobre todo asociadas a las TIC ́s (Tecnologías de la Información y Comunicaciones), hemos visto surgir en las últimas décadas las tecnologías de ciclo corto y sus modelos específicos de gestión, siendo actualmente las más utilizadas en una gran parte del mercado de consumo y permeabilizándose a otros campos, como el mundo bancario. En esta serie de dos artículos realizaremos una definición de tecnologías de ciclo corto y una forma de gestión de este tipo de proyectos que se conoce como metodologías ágiles (Agile). Finalmente describiremos una estructura creada y ajustada para la realización de proyectos de ciclo corto en el campo de la defensa en el marco de España, terminando con una evaluación crítica de dos resultados reales de sistemas realizados siguiendo este modelo y metodología de trabajo.

En este primer artículo vamos a realizar una breve descripción tanto de las tecnologías de ciclo corto como de las metodologías “Agile” y su aplicación a la realización de este tipo de proyectos (metodología de trabajo). Los actores y roles asignados para estos casos prácticos de aplicación son la Brigada «Guadarrama XII» como usuario final, Teldat S.A. como empresa y el Grupo de Investigación «B105 Electronic Systems Lab» de la Universidad Politécnica de Madrid como equipo de I+D+i. Asimismo y para el segundo proyecto, una vez analizados los resultados del primero que fue utilizado como experimento de trabajo, se incorporó el MALE como observador y enlace institucional con el Ejército de Tierra. Los proyectos que se han desarrollado y sobre los que realizaremos un análisis crítico son un «Puesto de mando inalámbrico a nivel Brigada (C4W)” y un «Sistema de blancos basado en proyección laser con reconocimiento automático de resultados (Blancok)».

En este artículo ha sido publicado por la Academia de las Ciencias y las Artes Militares (ACAMI) y está disponible, en su versión completa, en el siguiente link: https://acami.es/portfolio/tecnologias-ciclo-corto-metodologias-agiles-defensa/

TFM: DESIGN OF A PLATFORM FOR MEDICAL DEVICES THAT USE 5G NETWORKS

In the last couple of years, wearable devices have gained popularity, and their use has extended to numerous fields, including the sanitary sector. The increasing number of wearable devices that are being used in healthcare bring numerous advantages, such as a deallocated medicine in which patients can reduce the total of visits to hospitals or sanitary centers.

With the development of medical wearable devices, the mobile communications have also grown. This is the case of 5G, that it is becoming widely used. Therefore, medical wearable devices are starting to use 5G, which brings the necessity to provide the developers of these devices with a platform that helps them to test 5G communications.

While the main goal of the project is to design a platform for medical devices that use 5G, there are some steps that need to be covered first such as the selection of a generic 5G module or the medical sensors and tests that have the most compatibility with the platform.

A total of 4 different medical test have been chosen to operate alongside the platform considering the main characteristics of 5G, that are an extremely low latency and the ability to transmit plenty of data. The selected tests are the electroencephalogram (EEG), electrocardiography (ECG), electromyography (EMG) and oximetry.

When it comes to the 5G module, it has been selected after researching in the main providers and manufacturers of 5G products such as Télit, Quectel, Sierra wireless and Thundercomm. Finally, the Thundercomm T55 Development Kit has been selected. This kit includes the TurboX T55 5G module, that allows to test the sub6GHz bands in 5G and has an LGA form factor, making it the perfect candidate to develop the platform for medical devices.

The schematic of the platform for wearable devices have been captured with Altium Designer tool and it has five differentiated blocks as shown in the figure below. These blocks are the power supply, the connections with the medical sensors, connections with a SIM card, the 5G module, that is divided in two different sub blocks, and the antennas.

Alongside with the schematic of the platform for medical devices, a preliminary design of a printed circuit Board (PCB) has been included as shown in the figure below. This layout has been used to have an approximate idea of the dimensions of the platform and the placement and routing of its components. The dimensions of the PCB are 152.4 mm x 101.6 mm, and it has a total of two layers.

The results of this project conclude in a schematic design which provides a complete platform that allows developers to test the 5G connections in medical wearable devices in an efficient way.

TFM: DEVELOPMENT OF AN AUTOMATED ELECTROMYOGRAPHY SIGNAL ACQUISITION SYSTEM

Electromyography (EMG) is defined as the discipline related to the detection, analysis and use of the electrical signal that is generated at a muscle’s contraction. On many occasions, generating a database that allows a comprehensive study of measurements is complicated due to the lack of automation of this type of system. The implementation of this type of system in low-cost portable devices is the key to making its use on a large scale feasible.

Picture of the hardware used for control, acquisition and communications. The respective nicknames of these devices are: Heimdall (left), BioACQ (centre) and Cerberus (right).

This work contains the entire development process of an automated 4-channel EMG signal acquisition system. The developed application is based on an ARM Cortex M4 platform internally developed by the B105 Electronic Systems Lab, which suposed a challenge since it is an economic platform with limited resources. Other device used were the signal acquisition board with its amplified probes and the communications module capable of transmitting data in the 434, 868 and 2,400 MHz radio bands.

Diagram of the complete system. The different devices running the developed applications can be seen with the communication interfaces between them.

The application created for this project is divided into modules. The main ones are: the FSM control, the configuration component, the acquisition system and the communications complex. Partitioning the development helps to improve the quality of the code, reduces the time to detect errors and keeps the program simple. One key aspect of the final system is the use of a wireless link for augmented usability and galvanic protection. Additionally, a graphical user interface is stablished which offers live data representation. All the code regarding the application is available via the following link: https://bitbucket.org/repoB105/tfmdmolina/src/master/

Diagram of the finite state machine in charge of controlling the slave module. The transitions are controled via the incoming commands from the control interface.

The project also contains a section of analysis including performance information about the final solution. The resulting performance analytics show a portable system capable of running on batteries with room for improvement via software optimizations. Furthermore, every developed module is independently evaluated using an exclusively matured testing program. The purpose of this segment is to eliminate all bugs introduced in the code and strengthen the robustness of the system.

Picture showing the main graphical user interface. The panel shown is the configuration one, containing the multiple modifiable parameters of the acquisition system.

TFG: DEVELOPMENT OF ALGORITHMS FOR THE ACTIVITIES CHARACTERIZATION USING WIRELESS NETWORKS ON THE BODY

In this final project it is done a simple prototype, not complex in order not to overload the packet network or the computational part, of a sensor network, which communicating through wireless body area network (WBAN) are able to characterize daily activities. The nodes used were the Adafruit HUZZAH32 from the company Adafruit, it’s a System on Chip, which incorporates a Wi-Fi module that has been used for the communication between devices.

Firstly, an analysis has been done of the available system. On the one hand, an analysis of the devices and on the other hand a study of one possible characterization from data already collected.

In a second phase, the software of the devices has been modified to create the sensor network and to communicate with each other. For this purpose, the Wi-Fi module of the devices was used, after which, once they were connected, a series of experiments were carried out for different scenarios. With these experiments it has been possible to set thresholds for the development of the final classification algorithm.

Finally, in a third phase, the different tests have been exposed according to the algorithm performed in the second phase.

The results obtained have shown that it is a valid algorithm for the characterization of activities. In addition, an accelerometer has been included to differentiate more activities.