TFM: DESIGN OF A PLATFORM FOR MEDICAL DEVICES THAT USE 5G NETWORKS

In the last couple of years, wearable devices have gained popularity, and their use has extended to numerous fields, including the sanitary sector. The increasing number of wearable devices that are being used in healthcare bring numerous advantages, such as a deallocated medicine in which patients can reduce the total of visits to hospitals or sanitary centers.

With the development of medical wearable devices, the mobile communications have also grown. This is the case of 5G, that it is becoming widely used. Therefore, medical wearable devices are starting to use 5G, which brings the necessity to provide the developers of these devices with a platform that helps them to test 5G communications.

While the main goal of the project is to design a platform for medical devices that use 5G, there are some steps that need to be covered first such as the selection of a generic 5G module or the medical sensors and tests that have the most compatibility with the platform.

A total of 4 different medical test have been chosen to operate alongside the platform considering the main characteristics of 5G, that are an extremely low latency and the ability to transmit plenty of data. The selected tests are the electroencephalogram (EEG), electrocardiography (ECG), electromyography (EMG) and oximetry.

When it comes to the 5G module, it has been selected after researching in the main providers and manufacturers of 5G products such as Télit, Quectel, Sierra wireless and Thundercomm. Finally, the Thundercomm T55 Development Kit has been selected. This kit includes the TurboX T55 5G module, that allows to test the sub6GHz bands in 5G and has an LGA form factor, making it the perfect candidate to develop the platform for medical devices.

The schematic of the platform for wearable devices have been captured with Altium Designer tool and it has five differentiated blocks as shown in the figure below. These blocks are the power supply, the connections with the medical sensors, connections with a SIM card, the 5G module, that is divided in two different sub blocks, and the antennas.

Alongside with the schematic of the platform for medical devices, a preliminary design of a printed circuit Board (PCB) has been included as shown in the figure below. This layout has been used to have an approximate idea of the dimensions of the platform and the placement and routing of its components. The dimensions of the PCB are 152.4 mm x 101.6 mm, and it has a total of two layers.

The results of this project conclude in a schematic design which provides a complete platform that allows developers to test the 5G connections in medical wearable devices in an efficient way.

TFM: DEVELOPMENT OF AN AUTOMATED ELECTROMYOGRAPHY SIGNAL ACQUISITION SYSTEM

Electromyography (EMG) is defined as the discipline related to the detection, analysis and use of the electrical signal that is generated at a muscle’s contraction. On many occasions, generating a database that allows a comprehensive study of measurements is complicated due to the lack of automation of this type of system. The implementation of this type of system in low-cost portable devices is the key to making its use on a large scale feasible.

Picture of the hardware used for control, acquisition and communications. The respective nicknames of these devices are: Heimdall (left), BioACQ (centre) and Cerberus (right).

This work contains the entire development process of an automated 4-channel EMG signal acquisition system. The developed application is based on an ARM Cortex M4 platform internally developed by the B105 Electronic Systems Lab, which suposed a challenge since it is an economic platform with limited resources. Other device used were the signal acquisition board with its amplified probes and the communications module capable of transmitting data in the 434, 868 and 2,400 MHz radio bands.

Diagram of the complete system. The different devices running the developed applications can be seen with the communication interfaces between them.

The application created for this project is divided into modules. The main ones are: the FSM control, the configuration component, the acquisition system and the communications complex. Partitioning the development helps to improve the quality of the code, reduces the time to detect errors and keeps the program simple. One key aspect of the final system is the use of a wireless link for augmented usability and galvanic protection. Additionally, a graphical user interface is stablished which offers live data representation. All the code regarding the application is available via the following link: https://bitbucket.org/repoB105/tfmdmolina/src/master/

Diagram of the finite state machine in charge of controlling the slave module. The transitions are controled via the incoming commands from the control interface.

The project also contains a section of analysis including performance information about the final solution. The resulting performance analytics show a portable system capable of running on batteries with room for improvement via software optimizations. Furthermore, every developed module is independently evaluated using an exclusively matured testing program. The purpose of this segment is to eliminate all bugs introduced in the code and strengthen the robustness of the system.

Picture showing the main graphical user interface. The panel shown is the configuration one, containing the multiple modifiable parameters of the acquisition system.

TFG: DEVELOPMENT OF ALGORITHMS FOR THE ACTIVITIES CHARACTERIZATION USING WIRELESS NETWORKS ON THE BODY

In this final project it is done a simple prototype, not complex in order not to overload the packet network or the computational part, of a sensor network, which communicating through wireless body area network (WBAN) are able to characterize daily activities. The nodes used were the Adafruit HUZZAH32 from the company Adafruit, it’s a System on Chip, which incorporates a Wi-Fi module that has been used for the communication between devices.

Firstly, an analysis has been done of the available system. On the one hand, an analysis of the devices and on the other hand a study of one possible characterization from data already collected.

In a second phase, the software of the devices has been modified to create the sensor network and to communicate with each other. For this purpose, the Wi-Fi module of the devices was used, after which, once they were connected, a series of experiments were carried out for different scenarios. With these experiments it has been possible to set thresholds for the development of the final classification algorithm.

Finally, in a third phase, the different tests have been exposed according to the algorithm performed in the second phase.

The results obtained have shown that it is a valid algorithm for the characterization of activities. In addition, an accelerometer has been included to differentiate more activities.

TFM: DESIGN AND IMPLEMENTATION OF AN ADAPTER FOR COMMUNICATIONS THROUGH COGNTIVE RADIO

This work is part of the ROBIM project in which the working group B105 Electronic Systems Lab of the University Universidad Politécnica de Madrid collaborates. The ROBIM project takes part in the program Programa Estratégico CIEN with the support of the CDTI (Centro para el desarrollo tecnológico Industrial) and the RDF (Regional Development Forum) for Europe.

The ROBIM project seeks to automate technical inspections of buildings, reducing costs and execution times associated with these processes. The system makes use of a drone for inspection work, thus avoiding the installation of scaffolding and all the security measures that the process requires, which is costly in time and money. Currently, the drone has a communication channel that allows users to obtain information on the process, as well as direct the drone whenever necessary.
The main objective of this work is to create a secondary, safe and effective communication channel, for situations where communication with the main system is not possible. To achieve this, the project stablish the following requierements:

– The device must allow radiocommunication in ISM bands.
– The device has an USB interface to connect with the computer/drone.
– The communication must be reliable by allowing communication throwgh various channels and implementing software-defined radio and cognitive radio.

Therefore, to achieve these objectives, this work proposes the design of a 2-channel device for radiocommunication in the 433 MHz and 868 MHz bands, using two SPIRIT1 transceivers and an ARM Cortex-M4 microcontroller.

Picture of the device’s high-level design

The Hardware design has been made usign the Altium Designer PCB design layout tool . The designed PCB is divided into three parts: the power/communication stage, the control stage with the microcontroller and the radiofrecuency stage with both SPIRIT1 trasnceivers.

Picture of the 3D reconstruction of the board designed in Altium Design tool

The software design has been developed in 2 stages: software design of an application for evaluation boards during the PCB manufacturating process and software design of a final application for the designed PCB.
For the software design of evaluation board, the NUCLEO – L053R8 with the X-NUCLEO-IDS01A4 radio frequency module has been chosen, which allows radio communication in the 868 MHz band. The final design of the software is based on the software of the evaluation board but improving its functionality by adding communication through two channels with a cognitive procedure based on the CSMA / CA protocol and implementing serial communication with the user.

The application designed for the device allows, then, a cognitive communication based on CSMA/CA protocol in bands 433 MHz and 868 MHz in addition to communication with the user and the drone enabling the possibility of the implementation of the second channel for the communication with the drone.

TFM: Development of a wearable device for monitoring therapy animals

Animals have long been part of the human experience, serving multiple purposes throughout history, from food to companionship. In recent years, the therapeutic potential that offers the use of animals to help people overcome illness and/or mental disorders has been increasingly recognized, leading to more healthcare facilities providing Animal-Assisted-Interventions (AAIs) to their patients.

The steadily increasing popularity of AAIs programs is supported by the fact that they deliver health benefits to the patients. A growing literature gathers testimonials of veterinarians, psychologists and other pet-therapy enthusiasts about the effectiveness of AAIs programs for humans. In contrast, very few researchers have focused on the possible ill effects that AAIs programs have on the animals themselves.

Nowadays, the present lines of research that are trying to determine both positive and negative effects on the physical and mental well-being of the animals involved in AAIs are divided in two groups:

  • Non-invasive methodologies based on the interpretation of the body language of the animals. For instance, a dog’s wagging tail may mean different things depending on the speed of the wag, and whether the full tail or just the tip is wagging. Besides, dogs also use a range of what the renowned dog trainer Turid Rugaas refers to as
    “calming signals” that they use to defuse stressful situations. For example, a dog may lick her nose, sniff the ground, yawn, turn away, or stare in response to a stressful situation. The main drawback of these methodologies is the subjectivity of the observer.
  • Invasive methodologies based on medical procedures such as blood extractions, faces analysis or saliva analysis in order to measure certain hormones levels that could have correlation with the stress that could be suffering the animals during the AAIs. Despite of the fact of the objectivity of the results, due to the nature of these procedures, these interventions by themselves could provoke stress in the animals.

Thus, the aim of this Master’s Thesis is to design and develop an electronic wearable device to collect physiological and behavioral variables in dogs participating in the AAIs in order to extract stress patterns in different scenarios and therefore determine objectively the effects of the AAIs in the animal welfare. The data gathered will be analyzed by ethologists than can
evaluate what is happening in the process of interaction of the therapy dog with the rest of the actors. This way, conclusions related to the dog state in the different stages of therapy could be obtained, allowing the modification of the routines to increase the dog’s quality of life.

It is worth mentioning that this project is being carried out in collaboration with the Escuela Técnica de Ingenieros de Telecomunicación and the animals and society chair at the Universidad Rey Juan Carlos, which will be in charge of the visualization and interpretation, respectively, of the data acquired by the system to be developed in this Master’s Thesis.

To achieve this goal, this Master’s Thesis has focused on the development of the electronic wearable device that will monitor the therapy dog. This development has covered both the design and hardware implementation of the three printed circuit boards that make up the device, as well as the software implementation of the drivers needed to control each sensor individually in addition to the application architecture at the user level.

Both software implementations are based on two existing design patterns that provide modularity to the system in order to incorporate new sensors to the device. Finally, in order to validate the design and implementation
phases at hardware and software level, functional tests of the system have been carried out which have allowed conclusions to be drawn on the development of this project as well as to propose future lines to improve its current state.