Cognitive Wireless Sensor Network Platform for Cooperative Communications

Title: Cognitive Wireless Sensor Network Platform for Cooperative Communications
Authors: Agustín Tena, Guillermo Jara, Juan Domingo, Elena Romero, Alvaro Araujo
Published in: International Journal of Distributed Sensor Networks
Date of Publication: January 2014
Digital Object Identifier : 10.1155/2014/473905
Web: http://www.hindawi.com/journals/ijdsn/2014/473905/

Nowadays, Wireless Ad-Hoc Sensor Networks (WAHSNs), specially limited in energy and resources, are subject to development constraints and difficulties such as the increasing Radio Frequency (RF) spectrum saturation at the unlicensed bands. Cognitive Wireless Sensor Networks (CWSNs), leaning on a cooperative communication model, develop new strategies to mitigate the inefficient use of the spectrum that WAHSNs face. However, few and poorly featured platforms allow their study due to their early research stage.

This paper presents a versatile platform that brings together cognitive properties into WAHSNs. It combines hardware and software modules as an entire instrument to investigate CWSNs. The hardware fits WAHSN requirements in terms of size, cost, features, and energy. It allows communication over three different RF bands, becoming the first cognitive platform for WAHSNs with this capability. In addition, its modular and scalable design is widely adaptable to almost any WAHSN application.

Significant features such as Radio Interface (RI) agility or energy consumption have been proved throughout different performance tests.

 

nodo

PUE Attack Detection in CWSN Using Collaboration and Learning Behavior

Title: PUE Attack Detection in CWSN Using Collaboration and Learning Behavior
Authors: Javier Blesa, Elena Romero, Alba Rozas, Alvaro Araujo and Octavio Nieto-Taladriz
Published in: International Journal of Distributed Sensor Networks
Date of Publication: June 2013
Digital Object Identifier : 10.1155/2013/815959
Web: http://www.hindawi.com/journals/ijdsn/2013/815959/

Cognitive Wireless Sensor Network (CWSN) is a new paradigm which integrates cognitive features in traditional Wireless Sensor Networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in Cognitive Wireless Sensor Networks is an important problem because these kinds of networks manage critical applications and data. Moreover, the specific constraints of WSN make the problem even more critical. However, effective solutions have not been implemented yet. Among the specific attacks derived from new cognitive features, the one most studied is the Primary User Emulation (PUE) attack. This paper discusses a new approach, based on anomaly behavior detection and collaboration, to detect the PUE attack in CWSN scenarios. A nonparametric CUSUM algorithm, suitable for low resource networks like CWSN, has been used in this work. The algorithm has been tested using a cognitive simulator that brings important results in this area. For example, the result shows that the number of collaborative nodes is the most important parameter in order to improve the PUE attack detection rates. If the 20% of the nodes collaborates, the PUE detection reaches the 98% with less than 1% of false positives.

cognitive radio module

 

PUE attack detection in CWSNs using anomaly detection techniques

Title: PUE attack detection in CWSNs using anomaly detection techniques
Authors: Javier Blesa, Elena Romero, Alba Rozas and Alvaro Araujo
Published in: EURASIP Journal on Wireless Communications and Networking 
Date of Publication: September 2013
Digital Object Identifier : 10.1186/1687-1499-2013-215
Web: http://jwcn.eurasipjournals.com/content/2013/1/215

Cognitive wireless sensor network (CWSN) is a new paradigm, integrating cognitive features in traditional wireless sensor networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in cognitive wireless sensor networks is an important problem since these kinds of networks manage critical applications and data. The specific constraints of WSN make the problem even more critical, and effective solutions have not yet been implemented. Primary user emulation (PUE) attack is the most studied specific attack deriving from new cognitive features. This work discusses a new approach, based on anomaly behavior detection and collaboration, to detect the primary user emulation attack in CWSN scenarios. Two non-parametric algorithms, suitable for low-resource networks like CWSNs, have been used in this work: the cumulative sum and data clustering algorithms. The comparison is based on some characteristics such as detection delay, learning time, scalability, resources, and scenario dependency. The algorithms have been tested using a cognitive simulator that provides important results in this area. Both algorithms have shown to be valid in order to detect PUE attacks, reaching a detection rate of 99% and less than 1% of false positives using collaboration.

clusters

 

PFC: Development of a Cognitive Wireless Sensor Network Simulator

network_image-640x250 (1)

The objective of this project is the development of a simulator of Cognitive Wireless Sensor Networks. This simulator must support Cognitive Radio techniques adapted to wireless sensor networks. These techniques are: spectrum sensing, collaboration and learning, among others.

Related Technologies

  • Cognitive Radio
  • Wireless Sensor Networks
  • Linux
  • C++

Task

  • State of the art study in cognitive networks
  • Simulation analysis andrequirements definition
  • Architecture definition
  • Implementation of the modules and functionality
  • Tests and results

Requirements

  • Dedication: 4 hours/day.

Tutor

Javier Blesa <jblesa@die.upm.es>

Elena Romero <elena@die.upm.es>

State

Not assigned