Blog

DEPERITA – An intrusion alarm system to improve safety in road work zones

Road traffic accidents are one of the main causes of death and disability worldwide and you can learn this here now from this post. Workers responsible for maintaining and repairing roadways are especially prone to suffer these events, given their exceptional exposure to traffic.

The goal of this project is to develop an intrusion alarm system to improve safety in road work zones. It consists of several nodes equipped with ultrasonic sensors to detect possible vehicle breaches in the perimeter. In addition, we will develop individual warning devices to be worn by every worker that will be wirelessly connected to the detector nodes. This way, in case of a vehicle invading the work zone, each worker can be effectively and timely warned in order to make it to safety.

This project emerged from Jose Martin‘s MSc thesis, and later has been funded by the 2015 AEESD public call. Its official details are as follows:

Title: DEPERITA – DEtección PERImeTral para el Aviso a trabajadores en obras lineales
Code: TSI-100503-2015-0039
Duration: October 2015 – December 2017
Partners: Valoriza Infraestructuras and Universidad Politécnica de Madrid (B105-ESL)
Financing entity: Ministerio de Industria, Energía y Turismo (AEESD 2015)

logo_minetur

LÁZARO: Development of an innovative ICT system for the detection of architectural barriers and monitoring based on augmented reality

 

LÁZARO is a project carried out alongside Valoriza Servicios a la Dependencia S.L.U., with the objective of developing a system to automatically detect architectural barriers making use of computer vision and augmented reality. It will integrate the detection provided by sensors and images and the display of an augmented reality layer, together with a warning and checking system for the barriers.

In addition to the first objective, the project pursues another important goal, the development of a wireless sensor network to monitor the living conditions of people with special needs, such as elderly or disabled people. Therefore, the system will result in an integral solution for assisted living facilities and residences, although it can be applied to several other environments.

_JFF3543

The project details are as follows:

Title: LÁZARO: Development of an innovative ICT system for the detection of architectural barriers and monitoring based on augmented reality
Duration: 2016-2017
Partners: Valoriza Servicios a la Dependencia S.L.U. and Universidad Politécnica de Madrid
Financing entity: Valoriza Servicios a la Dependencia S.L.U. via CDTI.

Logo CDTI-MINECO con Gill Sans

SENSORIZA – Real time sensor system for meteorological data acquisition, freeze and snow forecast and road conservation, manteinance and security improvement

Weather conditions can be very dangerous and produce most of the accidents in road environments. To reduce the road accidents and to maintain the infrastructure, the goal of this project is to perform a wireless sensor system to obtain the weather conditions of the road in real time in order to predict freeze and snow events.

The system consist on a wireless module in the vehicle which takes the sensors information and stores for further processing.

The B105 Electronic Systems Lab. as a representative of Technical University of Madrid(UPM) participates with Valoriza in this innovative research project. To develop it we have the support of the Industrial Technological Center (CDTI) and the Ministry of Enery, Tourism and the Digital Agenda.

 

Logo CDTI-MINECO con Gill Sans

logo-vector-ministerio-de-energia-turismo-y-agenda-digital-web

TFM: Development of an auto-tuned mechanical energy harvester

The Wireless Sensor Networks (WSNs) field is expected to experience a disruptive development in the next few years. One of the main obstacles that designers face is the extremely low consumption requirements related to this networks, as the operational costs involved in changing empty batteries might be very high. Therefore, technologies that permit recovering residual energy from the environment –frequently referred as Energy harvesting techniques- might become a powerful enabler for WSNs, reducing the pressure exerted by the strict consumption restrictions.

The present work describes the full design and development of a mechanical Energy harvester based on an electromagnetic transducer. The system is capable of transforming mechanical energy in form of vibrations with a non-flat energy density spectrum into electrical energy that can be used to power sensors, ideally increasing their autonomy indefinitely.

In order to transform a reasonable amount of energy, the system must remain tuned with the external excitation: its natural frequency has to match the external vibration frequency. To guarantee this, the system has been designed so that it is able to auto-tune itself by changing its natural frequency within the range of 30 to 70 Hz, which typically contains the vibrations generated by engines and industrial machinery.

With this objective, an initial study of the State-of-the-art models and their working principles has been carried out, and some mechanical architectures to modify the system’s natural frequency have been introduced. The architectures have been simulated, built by means of 3D printing, measured and characterized to conclude that the most adequate one is based on changing the effective vibrating length of a steel cantilever. Strategies to determine whether the system is tuned have been then studied, and the advantages of using an algorithm based on the phase difference between the external excitation and the cantilever tip have been justified. An electronic system based on a microcontroller has been designed to implement the algorithm, and the study of the transducer has shown the need for some conditioning electronics. A voltage multiplier in a parallel topology has been used for this purpose. The multiplier has been designed so that its multiplying steps number can be altered. Finally, a supercapacitor has been proven to fit the application more adequately than a battery, so it has been used as the energy storage solution.

Once the system has been developed, a fully functional auto tuned prototype has been achieved. The prototype is able to power an electronic system. However, due to the great power consumption the electromechanical actuator imposes, the auto-powering of the system is only feasible in environments where tuning is seldom required. This would most likely change with the reduction in electromechanical actuators consumption, which would allow the use of systems as the one described in other fields where vibrations change in a more frequent fashion.