TFG: Diseño, desarrollo e implementación de un sistema de adquisición, almacenamiento y presentación de los datos obtenidos de una red de sensores inalámbricos

El objetivo de este Trabajo Fin de Grado es el diseño e implementación un sistema que adquiera, procese y almacene los datos obtenidos de la WSN y los presente a través de un servidor Web que permita consultar datos en tiempo real y en un histórico, así como envío de parámetros de control, con los que configurar la WSN.

El proyecto se basará en una red de sensores inalámbricos desarrollada de forma simultanea en otro Trabajo Fin de Grado, compuesta por dos tipos de nodos, Prometheus y Boucherot. Los nodos Prometheus se encargarán de medir valores como presencia y temperatura, además de estado de sus baterías, mientras que los Boucherot monitorizarán el consumo de todo dispositivo conectado a ellos. Asimismo, los nodos Boucherot también implementan una serie de actuadores que permiten el encendido y apagado de los aparatos conectados a los mismos. Esta red presenta además una serie de comandos que permiten configurar ciertos parámetros de medida de la red y del estado de sus nodos.

Para la implementación del sistema se ha recurrido a distintas herramientas:

  • Desarrollo de script en Python para adquisición, procesado y almacenamiento en base de datos. Así como el envío de comandos de control a la red inalámbrica. Se han empleado los módulos serial, sqlite3 y pynotify.
  • Desarrollo del servidor Web en Node.js, que sirve paginas con información de la red, información de las medidas en tiempo real y en un histórico, con módulos: socket.io, sqlite3, http-auth entre otros.
  • Diseño de las paginas web que se muestran en el cliente basadas en distintos frameworks como: Bootstrap 3, graficas de HighCharts, y tablas con Datatables y jQuery.

A continuación se muestra una breve descripción de la interfaz del sistema con el usuario, que se realiza a través de una serie de paginas web:

DOMOLabo B105_TrealPágina que muestra dinámicamente las medidas en Tiempo Real tomadas por la WSN

DOMOLabo B105_Hist

Página que muestra Histórico de las medidas tomadas por la WSN

Ambas páginas, constan de una serie de gráficas que muestran las medidas tomadas por la WSN. Cada gráfica agrupa a todos los sensores de un tipo y permite seleccionar los nodos que se desean visualizar en la leyenda. Además permite hacer zoom en la gráfica, bien seleccionando sobre ella o bien pulsando alguno de los botones de la esquina superior izquierda de la gráfica. También es posible exportar datos en distintos formatos, .pdf, .png, .svg, etc. gracias al botón situado en la esquina superior derecha.

DOMOLabo B105_Sensores

Página que muestra información y permite el control de la WSN

Esta pagina consta de una tabla principal donde se muestra información de todos los nodos de la red (identificadores, tipos de sensores presentes, localización del sensor y estado de la batería y de sus actuadores). En la parte inferior de la tabla se encuentra un formulario que permite añadir nuevos sensores al sistema.

En la parte superior de la tabla se presenta un conjunto de botones que permiten el envío de una serie de comandos de control a la red (Relé, Configurar el tiempo que un nodo permanece dormido y en estado activo, actuar sobre el relé y/o los leds, etc.). Estos comandos se envían al nodo AP de la red que se encarga de enviarlos al nodo que corresponda.

También se ha implementado una autenticación de usuarios, para el control de acceso a funciones de configuración de la red y del sistema. Para los usuarios no administradores el aspecto es ligeramente diferente al presentado, ya que las funciones de control están desactivadas y no se permite la incorporación de nuevos sensores al sistema. Sin embargo la tabla es visible y se permite como en el caso anterior consultar e imprimir el estado de la red.

Se ha tenido especial interés en implementar un sistema modular, en el cual la caída de un modulo no imposibilite el normal funcionamiento del resto. Escalable, donde se puedan gestionar múltiples peticiones simultaneas de usuarios con distintos dispositivos y necesidades de consulta. Primando también la versatilidad del sistema respecto a la red de la que se adquieran los datos.

El sistema se ha dimensionado ampliamente para soportar una red con mas de 100 sensores y almacenar datos durante varias décadas, con tiempos de medida de 1 minuto para los sensores.

 

Thesis: Software-Defined Radio Techniques for Resource Optimization in Cognitive Wireless Sensor Networks

Author: Ramiro Utrilla Gutiérrez

Advisor: Alvaro Araujo Pinto

Synopsis: Due to the spectrum scarcity problem, mostly in license-free ISM bands, and the forecasts regarding the increasing adoption of wireless communications, especially in scenarios like cities, it is essential to optimize the use of the spectrum to ensure the proper functioning of services and devices in the near future.

As the characteristics of the spectrum, by their own physical nature and its use, are very dynamic and vary constantly, devices must be able to intelligently adapt to these changes, as the Cognitive Radio paradigm proposes. Moreover, this adaptation should be done quickly in order to be effective and it should minimize the impact on the use of the spectrum.

Because of that, this work is going to be mainly focused on the development and evaluation of cognitive strategies with zero or minimum communication overhead. In other words, the aim of the research is to evaluate the degree of optimization of resources that can be achieved in a Cognitive Wireless Sensor Network (CWSN) by doing the cognitive cycle (spectrum sensing, learning and adaptation) mostly at node-level. To better exploit the cognitive radio capabilities of these networks, and thanks to the current development of wireless and processing technology, Software-Defined Radio (SDR) techniques are going to be used in sensor nodes for that purpose. This approach supposes a new paradigm in CWSNs which implies new challenges to be faced.

At this point, it appears to be necessary to evaluate some issues about the future of wireless communications. Will someday the need for cognition to use the spectrum outweigh the current energy constraints? In other words, will it be possible to achieve efficient and reliable wireless communication without cognitive capabilities in the near future? Answering this question will reveal whether it still make sense to compare the power consumption of SDR solutions with other platforms based on COTS radio transceivers or, conversely, the addition of cognitive capabilities will cease to pose a challenge to maximize systems’ efficiency and become a key point for their proper operation.

 

ContikiHUB

Las Redes de Sensores Inalámbricas (WSN por su nombre en inglés, Wireless Sensor Networks) se encuentran en una fase de rápida expansión por su gran valor en aplicacionescomo la domótica, seguridad o la gestión de recursos en el ámbito industrial. Continuando con la línea de investigación en sistemas operativos (OS) para redes de este tipo recientemente iniciada en el laboratorio, hemos decidido realizar un proyecto que resultará de enorme utilidad a la hora de iniciar el despliegue de una WSN.

ContikiHUB es una plataforma que actúa como pasarela entre los nodos de una WSN que implemente el sistema operativo Contiki e internet. Dado que una WSN emplea distintos protocolos de comunicaciones y medios físicos que los de una red clásica de internet, el objetivo es el de diseñar un hardware capaz de adaptar esos medios físicos para que puedan interconectarse, a la vez que trabajar en el sistema operativo para hacerlo totalmente funcional en dicho hardware y lograr que los protocolos para WSN que utiliza Contiki sean compatibles con los que se emplean en internet.

IMG_20150427_143036

De esta forma, el resultado final será una plataforma capaz de integrarse por un lado en una WSN (actuando como nodo si es preciso gracias a varios puertos de expansión donde podrán conectarse diversos tipos de sensores) y por otro con un router de una red de internet, pudiendo enviar y recibir datos libremente entre ambas redes.

Despliegue de un banco de pruebas para CWSN

El objetivo de este Proyecto Fin de Carrera es el despliegue de un banco de pruebas para una red de sensores cognitiva (CWSN). Esta red contará con varios nodos cognitivos que permitirán la prueba de estrategias de optimización en este tipo de redes. Este banco de pruebas se realizará contando con una serie de nodos cognitivos previamente desarrollados en el laboratorio (cNGD) sobre el que se han hecho varios desarrollos software para adaptar tanto el protocolo de comunicación radio como la arquitectura cognitiva.

El despliegue del banco de pruebas cubrirá todas las salas permitidas del laboratorio B105 y el Departamento de Ingeniería Electrónica. Este proyecto abarca tanto la planificación del montaje físico de los nodos como el desarrollo de una interfaz para la gestión y recolección de información del banco de pruebas. Algunos parámetros a tener en cuenta serán el alcance de los nodos, su accesibilidad o la fuente de alimentación.

Tecnologías relacionadas

  • Cognitive Radio
  • Wireless Sensor Networks
  • Linux
  • C
  • Diseño Hardware

Tutor

Javier Blesa <jblesa@die.upm.es>
Elena Romero <elena@die.upm.es>

Status

Sin asignar

An Architecture’s Desing and Implementation for Communications Management in a Cognitive Wireless Sensor Network

human_network_

The objective of this project is to design and develop a software architecture that will be able to implement cognitive strategies in nodes to conform a CWSN.

The main model this architecture follows is that one proposed in the Connectivity Brokerage (Jan Rabaey, Adam Wolisz, Ali Ozer Ercan, Alvaro Araujo, Fred Burghardt, Samah Mustafa, Arash Parsa, Sofie Pollin, I-Hsiang Wang, Pedro Malagon 2010) and is represented as follows:

CRModule

In the figure above six modules are shown inside the CAgent (Cognitive Agent). Each of this modules play an specific role inside the Cognitive Module and the work of all of them makes possible the execution of the Cognitive Cycle as defined in Cognitive Networks (Ryan W. Thomas, Luiz A. DaSilva, Allen B. MacKenzie 2005) which exposes that: “A cognitive network has a cognitive process that can perceive current network conditions, and then plan, decide and act on those conditions. The network can learn from these adaptations and use them to make future decisions, all while taking into account end-to-end goals.”.

Related Technologies

  • Cognitive Radio
  • Wireless Sensor Networks
  • Hardware design
  • C programming

Task

  • State of the art study in cognitive networks
  • Requirements definition
  • Architecture design
  • Hardware design
  • Software implementation
  • Tests and results

Tutor

Alvaro Araujo <araujo@die.upm.es>

State

In progress