With the development of the IoT, the number of devices of different nature and size
that are distributed throughout the environment has increased enormously, generating data
continuously. These data can often be processed where we generate them. However
sometimes we can not have enough computing power to do it or we want to access them
remotely to see the correct functioning of a system or for example to store them in a
database.
With this background it makes necessary to develop an electronic system that can be
conected in an easy way to the place where we are generating the information and transport it
to our central node. For our particular case, we aspire to establish a real time stream in order
to represent the data in a graphic, in order to give to the user a proper view of the
performance of his sensor node.
We have developed a WIFI gateway that allows this automation that we have
explained. We have used the Zentri AMW 106, an ultralow consumption WIFI module who fits
perfect in our requirements. We can attach via serial (using UART) to our electronic system to
the module where we generate the data and creating a TCP-IP client send to our server
wirelessly.
We have also made an effort in develop an user friendly application in the server side.
This application has the ability of representing the data we are sending in real time and at the
same time to store in a file having a register. This register can be accessed to consult the
values obtained in a certain time.
En este post voy a hablar de mi trabajo de fin de grado que se titula desarrollo de interfaces de comunicación para un nodo pasarela de redes de sensores cognitivas. Este trabajo está enmarcado dentro del banco de pruebas para redes de sensores cognitivas, que se está desarrollando dentro del grupo de investigación B-105. Dentro de este grupo de investigación también se ha realizado la plataforma cNGD, que será la base desde la que parte este trabajo. El objetivo es desarrollar un nodo pasarela que facilite la interacción con el banco de pruebas. Esto quiere decir, que tanto programar los nodos de la red como obtener información de ellos se pueda realizar conectando un ordenador al nodo pasarela.
Se eligió utilizar wifi y Ethernet como interfaces de comunicación para el nodo pasarela. El siguiente paso fue realizar las placas de expansión. Para ello se utilizó el programa Altium Designer tanto para los esquemáticos como para los trazados de las placas. Posteriormente se montaron y soldaron los componentes de las placas de expansión wifi.
A nivel software se integró una torre de protocolos TCP/IP y se desarrolló una aplicación que permitiese realizar las funciones de pasarela. La torre de protocolos TCP/IP la proporciona la empresa Microchip y debido a su complejidad, el proceso de integración ha sido largo. Con la aplicación de funciones pasarela, se consigue enviar instrucciones a los nodos de la red CWSN y recibir datos de los mismos.
Como línea futura para este trabajo, queda terminar la soldadura de la placa ethernet y corregir los fallos de inicialización que han aparecido durante las pruebas. Esto se conseguirá en un futuro no muy lejano porque failure is not an option.
Es sorprendente como a veces una buena idea, aun siendo muy simple, es suficiente para abrir la puerta a explorar cuestiones muy complejas. Este es el caso del experimento que os presento a continuación, el cuál me entusiasmó hace poco por su sencillez y lo interesante que resulta.
Su autor, un tal CNLohr (impronunciable), básicamente conecta un LED RGB al cada vez más conocido módulo de WiFi ESP8266 y lo configura de modo que el LED cambia de color en función de la potencia recibida por el dispositivo. Una vez hecho esto, ya solo queda jugar y fliparlo en colores ;P
Toda la información y recursos relacionados con el proyecto están disponibles y accesibles tanto desde la web del mismo, como desde su vídeo en Youtube donde lo presenta.
Lo primero que puede llamar la atención es como únicamente con pequeños giros en una posición estática, el LED ya cambia rápidamente de azul (buena señal) a verde (regular) o rojo (mala señal). Esto se debe a que las antenas no emiten y reciben igual en todas las direcciones. Cada antena tiene un patrón de radiación asociado que determina cómo se comporta en el espacio. Por lo tanto, en caso de que no supiésemos mucho sobre la antena de algún dispositivo, con una prueba similar a esta podríamos determinar la mejor orientación para su colocación, mejorando las comunicaciones.
Por otra parte, se observa como con desplazamientos muy cortos también se producen grandes variaciones en la potencia de señal recibida y que estas no son aleatorias, es decir, que cada punto en el espacio recibe la señal con una calidad determinada y esta no varía significativamente en periodos cortos de tiempo, como se puede apreciar en el primer vídeo.
Para ver esto más claramente, nuestro amigo CNLohr realiza una serie de pruebas con fotos de larga exposición donde barre un cierto área con su dispositivo tratando de obtener así el mapa de cobertura en dicha superficie.
Pese a que en los resultados de dicha prueba comienzan a intuirse posibles patrones, se considera que la calidad no es suficiente y se realiza otra prueba grabando un vídeo y montando a partir de él una imagen. En este caso, los resultados obtenidos son más claros, como podemos ver a continuación.
El siguiente paso que da nuestro incansable amigo en aras de la precisión es instalar su dispositivo en una fresadora CNC para madera. En este caso, en vez de utilizar una cámara para capturar la potencia de señal recibida, lo que hace es ir guardando en cada posición del espacio el valor del RSSI medido y después representarlo por software. De este modo, realiza varias pruebas. Por una parte, escanea un área cuadrada de un metro de lado en pasos de un centímetro, logrando un resultado impresionante.
Por otro parte escanea un volumen de 36 x 36 x 18 cm e implementa una herramienta para visualizar los datos. En ella es posible controlar algunos parámetros como un umbral a partir del cual quieres visualizar las medidas u otras opciones de coloración o densidades. De esta manera, se puede ver que zonas son aquellas con peor calidad de señal y como evolucionan en el espacio.
Alert: A partir de aquí ya no hay más fotos bonitas, se hablará de rayos, interferencias y cosas raras que tratan de explicar el tema de los colorines. Abstenerse somnolientos.
Para entender a qué se pueden deber esas zonas tan próximas entre sí donde la potencia de señal cae considerablemente debemos recurrir a la teoría. En primer lugar, el modelo de pérdidas de propagación en espacio libre nos dice que las pérdidas son independientes de la frecuencia de la onda y que aumentan con la distancia al cuadrado. Sin embargo, este modelo que es el que se emplea en la ecuación básica de Friis, no contempla ningún tipo de obstáculo próximo que pueda producir reflexiones o difracción, lo cual es algo irreal en una aplicación práctica y, por lo tanto, no nos sirve para lo que tenemos entre manos.
Por otra parte, el modelo de tierra plana tiene en cuenta, además de un rayo directo, un rayo reflejado que interfiere en el receptor.
Si asumimos que la frecuencia de la onda transmitida es 2.45 GHz y que tanto transmisor como receptor se encuentran a 1 metro de altura, las pérdidas que introduce este modelo en función de la distancia tienen la siguiente forma.
Lo que sucede es lo siguiente. Si el punto de reflexión del rayo interferente se encuentra fuera de la primera zona de Fresnel, lo que ocurre cuando el transmisor y el receptor están relativamente próximos entre sí, la combinación de los rayos puede ser constructiva o destructiva, dependiendo de la diferencia de fase. Esto es lo que produce los denominados lóbulos de interferencia entre los rayos directo y reflejado, que oscilan alrededor del valor en el espacio libre. Estas variaciones reflejan el hecho físico del refuerzo o cancelación del campo, según las ondas incidente y reflejada se sumen en concordancia o en oposición de fase. Como la longitud de onda de la señal es de 12 cm aproximadamente, variaciones de esa magnitud en la distancia que recorre el rayo reflejado son las que producirán esas variaciones de base y, por lo tanto, esos lóbulos. Esto se corresponde con las áreas de mala calidad de señal que veíamos en las imágenes que capturaba nuestro amigo CNLohr. La diferencia es que en la realidad hay múltiples reflexiones, lo que hace que su análisis teórico sea prácticamente imposible mientras que con un dispositivo como el que hemos visto puede mapearse el entorno para tener una idea de qué está sucediendo. Como anotación práctica, si un día no pillas bien Internet en el portátil, piensa que tal vez (pueden ser otros motivos) no es necesario irte a otra habitación, y basta con desplazarlo unos centímetros para mejorar la conexión.
Por concluir lo anterior, si el punto de reflexión estuviese situado exactamente en el límite de la primera zona de Fresnel, la combinación sería constructiva, y coincidiría con el mínimo del último lóbulo. Por último, si se encuentra dentro de la primera zona de Fresnel, el enlace se considerará sin línea de visión (NLOS) y la combinación del rayo reflejado contribuirá siempre destructivamente. La distancia a partir de la cual esto sucede se puede calcular como: d=(12*ht*hr)/(longitud de onda) = 12/0.12=100 m. Como se puede observar en las imágenes anteriores, a partir de ese punto, el modelo decrece con la distancia a la cuarta, en vez de al cuadrado como sucede en condiciones de espacio libre.