Conexión con la red NB-IoT de Vodafone

Ya estamos trabajando con los módulos NB-IoT del proyecto Sensoriza y hemos conseguido conectarnos con la red de Vodafone desde el laboratorio.

Hemos hecho pruebas con dos plataformas hardware. En primer lugar usamos una shield NB-IoT para Arduino de la empresa SODAQ que incorpora el módulo SARA-N211 de u-blox. Nosotros la utilizamos de forma autónoma, alimentándola directamente sin utilizar ningún Arduino. Por otro lado tenemos el módulo BC95 de Quectel montado en su propia Evaluation Board. Ambos se conectan mediante un puerto serie USB a un ordenador, ya que los módulos se controlan mediante comandos AT. El escenario de pruebas es el siguiente, con el módulo de u-blox más pequeño a la izquierda y el de Quectel a la derecha.

pruebasNBIoT

Tras estudiar y entender la sucesión de comandos necesaria, y con la información que nos ha facilitado Vodafone, hemos conseguido conectar ambos dispositivos a la red de forma correcta.

conexionserie

El eSpMART105 toma forma

Dentro de la colaboración del B105 ESL con la empresa Valoriza nace el proyecto Lázaro, con el objetivo de crear un sistema para la detección automática de barreras usando visión por ordenador y realidad aumentada.

Además de este primer objetivo, el proyecto persigue otra importante meta, el desarrollo de una red de sensores inalámbrica para monitorizar las condiciones de vida de personas con necesidades especiales, como ancianos o personas con minusvalía.

Es dentro de este segundo objetivo donde nace nuestro wearable: eSpMART105.

El dispositivo que hemos desarrollado es una pulsera, capaz de medir la temperatura (ya sea ambiente o corporal del paciente), medir su ritmo cardíaco, su saturación de oxígeno y monitorizar su actividad diaria, detectando posibles caídas y avisando al personal que se encuentre a cargo de dicho paciente.

Imagen 2
Pulsera eSpMART105

Gracias a una aplicación móvil para Android, también desarrollada por nosotros, el personal sanitario puede en todo momento consultar el estado del paciente, ver un registro de sus últimas medidas, así como cambiar la periodicidad de las mismas, consultar su historial clínico, recibir alertas sobre posibles valores anómalos en el paciente o caídas y administrar, sencillamente desde el móvil, a todos los pacientes de la residencia.

Main_Activity2
Una de las vistas de la aplicación

La comunicación entre la pulsera y el móvil se realiza mediante Bluetooth Low Energy, el más actual de los estándares Bluetooth disponibles.

Además, en caso de que se detecte un evento de gran peligrosidad como una caída o un pulso anormalmente alto, la pulsera es capaz de realizar una búsqueda exhaustiva de puntos de acceso Wi-Fi almacenados en su base de datos y establecer conexión con ellos, enviando el aviso. Esto hace a nuestra solución capaz de comunicarse con dos de las tecnologías inalámbricas más ampliamente usadas en el mercado actual. Todo ello con un consumo muy bajo, que permite a la pulsera (dependiendo de los intervalos de medición de parámetros del paciente) una vida de hasta dos semanas. Para el desarrollo de esta pulsera nos hemos basado en el ESP32, un dispositivo genial para desarrollo debido a su integración en un reducido tamaño de Wi-Fi y Bluetooth, así como numerosos GPIO’s, I2C, SPI, UART, control para pantallas táctiles y mucho más.

Imagen 3
ESP32

La caja de la pulsera, así como su correa es también diseño nuestro. Ha sido impreso en material 3D, recurriendo a filamento rígido transparente para la caja, pues la rigidez de este material aporta robustez mecánica al diseño, y material blanco flexible para la correa, compuesto que la hace más cómoda de llevar.

Paralelo a este desarrollo hemos recurrido a relojes de la marca Pebble, que permiten programar aplicaciones en C e incorporan también comunicación Bluetooth y sensor de ritmo cardíaco. Gracias a este reloj podemos obtener datos nuevos del paciente como su nivel de actividad, sus pasos diarios y una segunda medición de ritmo cardíaco, que aporta robustez a la medida de nuestro sistema. Los datos que recoge esta otra pulsera son también enviados a la misma aplicación de Android, quedando por tanto, toda la información del paciente centralizada.

Obtención de indicadores de fatiga mediante el electroencefalograma.

Desde el proyecto Simbiosys, buscamos nuevas formas de detección de fatiga. Puesto que el sistema está destinado a ser usado en un simulador para conductores de vehículos, se busca que sea lo menos intrusivo posible, para facilitar el movimiento y comodidad del conductor.

Con este fin se está desarrollando un sistema multisensor con una parte importante de investigación como es la detección de distintos estados de fatiga mediante la actividad cerebral del conductor.

Para la obtención del electroencefalograma (EEG) se eligió un casco con un único electrodo, ya que los EEG convencionales presentan más de veinte electrodos, lo cual sería muy intrusivo para el conductor.

21_electrodes_of_International_10-20_system_for_EEG.svg

Tras la obtención de la señal en bruto del cerebro, el sistema se basa en la detección de la cantidad de energía que existe en las diferentes bandas del cerebro. En este caso las bandas de interés serán la banda alpha, betha y tetha, todas ellas relacionadas con estados de cansancio, fatiga o sueño.

5d3d36b587c91d50c495eeb3ed8f5ca2

El sistema consta de dos partes diferenciadas, basadas en machine learning. En la primera parte se obtiene las características – la energía de cada banda- del sujeto en estado de consciencia (no fatigado) para formar dos clústeres.
2clus_2

El objetivo es generar dos esferas que engloben todas las características en este estado, de tal forma que, si en la segunda parte del algoritmo se obtiene alguna característica que no pertenece a los clústeres, se considera una anomalía. Será la acumulación de anomalías durante un periodo de tiempo la que nos indique la presencia de fatiga en el sujeto.

 

Empezando a trabajar con NB-IoT

Dentro del proyecto Sensoriza desde el grupo B105 hemos empezado a trabajar por primera vez con la tecnología Narrowband-IoT (NB-IoT).

NB-IoT es un estándar promovido por 3GPP que reutiliza una pequeña parte del espectro LTE. Por tanto, con un pequeño cambio en las estaciones base, proporciona el mismo alcance geográfico que la tecnología móvil 4G actual. La conectividad que proporciona es de muy bajo ancho de banda y baja tasa de datos, a la vez que ofrece una cobertura muy profunda llegando a lugares subterráneos o zonas rurales remotas. Por lo tanto está especialmente diseñada para dispositivos autónomos del mundo del internet de las cosas, como contadores inteligentes, alarmas, agricultura conectada, etc.

nbiotbands

Nuestro objetivo es dotar a las máquinas de conservación y mantenimiento de carreteras de un módulo NB-IoT mediante el que puedan transmitir la información recogida por sus sensores ambientales a un centro de control. Utilizando esta tecnología tendremos conectividad desde las carreteras de montaña remotas donde se realizan la mayor parte de actuaciones de vialidad invernal, lo que hasta ahora no era posible.

bc95

Como pasos iniciales estamos trabajando con dos módulos de dos fabricantes diferentes. En primer lugar tenemos un módulo BC95 de Quectel, que nos ha facilitado su distribuidor en España Monolitic. Por otro lado estamos utilizando una plataforma basada en Arduino que incorpora un módulo SARA-N211 de u-blox. Vodafone, que es la principal compañía telefónica que está implantando la tecnología NB-IoT en España, nos ha proporcionado dos tarjetas SIM para hacer pruebas de conexión con su red.

sara-n2

ROBIM: Autonomous robots to inspect and evaluate buildings with BIM integration

 

The main challenges to overcome in building rehabilitation refer to the use of inefficient traditional techniques and processes as well as to the lack of updated qualitative and quantitative building information. Additionally, building surroundings and facades usually include vulnerable and geometrically complex elements that jeopardize a direct access to them for rehabilitation purposes. This is a critical aspect as the energetic behavior of a building is intimately related to its design and the materials used, hence when materials become functionally or energetically obsolescent, rehabilitation is absolutely necessary so to achieve a minimum energetic efficiency.

In this context, the main objective of the ROBIM project is to develop an automated robotic system that eases the acquisition of detailed and representative information about the state of conservation and composition of enclosures of the building. This system will allow to cut costs
regarding auxiliary equipment used in order to safely access to surroundings of the building, applying state-of-the-art non-destructive inspection techniques and integrating all the information obtained in a digital platform based in BIM methodology. Hence, it will be developed a global solution capable to successfully diagnose the state of a building and provide information in order to effectively decide the typology and scope of the rehabilitation tasks to be performed.

bim_interoperability

Title: ROBIM –  ROBÓTICA AUTÓNOMA PARA INSPECCIÓN Y EVALUACIÓN DE EDIFICIOS EXISTENTES CON INTEGRACIÓN BIM
Duration: November 201 – October 2020
Partners: EUROESTUDIOS, S.L; FCC CONSTRUCCIÓN, S.A; GEOTECNIA Y CIMIENTOS, S.A; INSYTE, S.A; IMATIA INNOVATION, S.L; IBIM BUILDING TWICE, S.L; UNIVERSIDAD POLITÉCNICA DE MADRID (giSCI y B105 – ESL); UNIVERSITAT POLITÈCNICA DE VALÈNCIA; UNIVERSIDAD DE VIGO;  ITAINNOVA.
Financing entity: Programa Estratégico de Consorcios de Investigación Empresarial Nacional (CIEN) – Centro para el Desarrollo Tecnológico Industrial (CDTI)

More information:
Project info
UPM info 
Kickoff meeting     

logo_min_web

logos_robim2