Obtención de indicadores de fatiga mediante el electroencefalograma.

Desde el proyecto Simbiosys, buscamos nuevas formas de detección de fatiga. Puesto que el sistema está destinado a ser usado en un simulador para conductores de vehículos, se busca que sea lo menos intrusivo posible, para facilitar el movimiento y comodidad del conductor.

Con este fin se está desarrollando un sistema multisensor con una parte importante de investigación como es la detección de distintos estados de fatiga mediante la actividad cerebral del conductor.

Para la obtención del electroencefalograma (EEG) se eligió un casco con un único electrodo, ya que los EEG convencionales presentan más de veinte electrodos, lo cual sería muy intrusivo para el conductor.

21_electrodes_of_International_10-20_system_for_EEG.svg

Tras la obtención de la señal en bruto del cerebro, el sistema se basa en la detección de la cantidad de energía que existe en las diferentes bandas del cerebro. En este caso las bandas de interés serán la banda alpha, betha y tetha, todas ellas relacionadas con estados de cansancio, fatiga o sueño.

5d3d36b587c91d50c495eeb3ed8f5ca2

El sistema consta de dos partes diferenciadas, basadas en machine learning. En la primera parte se obtiene las características – la energía de cada banda- del sujeto en estado de consciencia (no fatigado) para formar dos clústeres.
2clus_2

El objetivo es generar dos esferas que engloben todas las características en este estado, de tal forma que, si en la segunda parte del algoritmo se obtiene alguna característica que no pertenece a los clústeres, se considera una anomalía. Será la acumulación de anomalías durante un periodo de tiempo la que nos indique la presencia de fatiga en el sujeto.

 

Empezando a trabajar con NB-IoT

Dentro del proyecto Sensoriza desde el grupo B105 hemos empezado a trabajar por primera vez con la tecnología Narrowband-IoT (NB-IoT).

NB-IoT es un estándar promovido por 3GPP que reutiliza una pequeña parte del espectro LTE. Por tanto, con un pequeño cambio en las estaciones base, proporciona el mismo alcance geográfico que la tecnología móvil 4G actual. La conectividad que proporciona es de muy bajo ancho de banda y baja tasa de datos, a la vez que ofrece una cobertura muy profunda llegando a lugares subterráneos o zonas rurales remotas. Por lo tanto está especialmente diseñada para dispositivos autónomos del mundo del internet de las cosas, como contadores inteligentes, alarmas, agricultura conectada, etc.

nbiotbands

Nuestro objetivo es dotar a las máquinas de conservación y mantenimiento de carreteras de un módulo NB-IoT mediante el que puedan transmitir la información recogida por sus sensores ambientales a un centro de control. Utilizando esta tecnología tendremos conectividad desde las carreteras de montaña remotas donde se realizan la mayor parte de actuaciones de vialidad invernal, lo que hasta ahora no era posible.

bc95

Como pasos iniciales estamos trabajando con dos módulos de dos fabricantes diferentes. En primer lugar tenemos un módulo BC95 de Quectel, que nos ha facilitado su distribuidor en España Monolitic. Por otro lado estamos utilizando una plataforma basada en Arduino que incorpora un módulo SARA-N211 de u-blox. Vodafone, que es la principal compañía telefónica que está implantando la tecnología NB-IoT en España, nos ha proporcionado dos tarjetas SIM para hacer pruebas de conexión con su red.

sara-n2

Pruebas de detección de vehículos en la A-1 para el proyecto Easysafe

El paso día 26 fuimos a realizar pruebas para el proyecto Easysafe. La hubicación de las pruebas la autovía A-1 en el kilómetro 111. En él se realizaros varios test enfocados a la detección de vehículos, personas y fauna en la carretera. Esto se realizó por medio de varios tipos de acelerómetros y un magnetómetro sitiados fuera del asfalto. Como se puede apreciar en las fotografías, los sensores fueron colocados en el quitamiedos, a una distancia bastante lejana de loos vehículos y aun así las medidas han sido satisfactorias. A partir de ahora, el trabajo se centrará en el algoritmo para discriminar el tipo de vehículo, animales y personas.

easysafe

Desarrollando con Google Tango

Tango es una plataforma de visión artificial y realidad aumentada desarrollada por Google. Gracias a ella, dispositivos como smartphones y tablets pueden conocer y entender su posición en el mundo que les rodea sin necesidad de GPS u otras señales externas. Esto tiene múltiples aplicaciones como la navegación en interiores, el mapeo 3D, la medición de espacios físicos, el reconocimiento de objetos, etc.

El funcionamiento de la plataforma se basa en tres tecnologías principales: el seguimiento del movimiento (Motion Tracking) utilizando las medidas de acelerómetros y giróscopos en conjunto con las características visuales; el aprendizaje de área (Area Learning) que consiste en el almacenamiento de datos del entorno como espacios, paredes, puertas, etc; y la percepción de profundidad (Depth Perception) que permite entender las formas del entorno.

Para realizar todas estas acciones, Tango se basa principalmente en la información visual proporcionada por la cámara del dispositivo. Sin embargo, dado que los datos de profundidad y distancia a los objetos son clave, la plataforma no puede funcionar en teléfonos típicos con una sola cámara. De hecho, los dispositivos habilitados para ejecutar Tango cuentan además de con la cámara convencional, con un objetivo fish-eye para el seguimiento de movimiento y con un emisor-detector de infrarrojos para medir la profundidad. En la actualidad solo existe en el mercado uno de estos dispositivos, la phablet Lenovo Phab 2 Pro.

tango-phab-2-pro

En el laboratorio B105 hemos adquirido uno de estos dispositivos ya que vamos a utilizar Google Tango en uno de nuestros proyectos de investigación. En las siguientes imágenes se pueden ver algunas de las cosas que pueden hacerse con la plataforma y sus aplicaciones.

Avances en el proyecto LÁZARO

¡El Proyecto LÁZARO para la detección de barreras arquitectónicas y sensorización sigue avanzando a buen ritmo!

Finalmente una de las ideas de diseño que abordaremos, en el lado del paciente, será el uso de un dispositivo wearable (un reloj), dotado de comunicación por puerto serie, que se conectará a una placa de desarrollo con funcionalidades Wi-Fi, Bluetooth y sensado de temperatura del paciente.

Ya hemos recibido los primeros prototipos para las placas que implementarán todo el diseño y que podéis ver en la foto que acompaña a esta entrada. En breve comenzaremos a montar en ella los componentes y a comenzar las primeras pruebas, una vez que el software sea funcional. ¡Estamos muy ilusionados con este proyecto!

Para el reloj hemos recurrido a la compañía Pebble, aunque una línea futura en la que nos gustaría trabajar es en el desarrollo de nuestro propio wearable, que nos permitirá un grado de personalización y optimización mucho mayor.

Para las comunicaciones móviles nos apoyaremos en el módulo ESP32.

¡Os seguiremos informando según avance el proyecto!