Concedida matrícula de honor a PFC englobado dentro del proyecto DEPERITA

El proyecto DEPERITA (DEtection PERImetral system for lineal TrAffic works) está siendo actualmente desarrollado en el laboratorio B105. El sistema busca desarrollar un sistema que mejore la seguridad en obras de mantenimiento de carreteras. En estos trabajos, es habitual llevarlos a cabo sin cerrar la calzada, cortando sólo parte de los carriles, con el fin de no interrumpir completamente el tráfico. Sin embargo, en estos casos, los trabajadores están expuestos al tráfico, ya que los coches circulan muy cerca de ellos y cabe la posibilidad de que algún vehículo se introduzca en la zona cerrada al tráfico, en la que se encuentran los trabajadores. Para reducir la posibilidad de accidente en estos casos, se ha planteado desarrollar un sistema que alerte a los trabajadores en caso de que algún vehículo invada la zona de trabajo.

La detección de los vehículos se realiza mediante unas balizas o detectores que se acoplarán a los conos empleados para realizar el corte del tráfico. Las balizas se encargarán de, si algún vehículo cruza ,la zona delimitada, avisar a todos los trabajadores a través de un reloj que cada uno de ellos lleva puesto. Todas estas balizas y relojes forman una red inalámbrica en la banda conocida como SRD (Short Range Devices) de 868 MHz. Esta se encarga de distribuir los avisos de peligro, activar o desactivar la detección de vehículos, e informar del estado de los dispositivos.

road
Esquema reducido de un despliegue objetivo.

Cuando algún vehículo cruce este perímetro, la baliza asociada a ese segmento lo detectará, y se avisará a los trabajadores mediante sus relojes y también con la sirena incorporada en alguna de las balizas. De esta manera, pueden apartarse de la zona de la carretera y evitar un posible atropello. Una vez pasa el peligro, el responsable de la obra puede, mediante su reloj, parar el aviso y poner en marcha el sistema de nuevo.

El primer prototipo de este sistema fue desarrollado en el PFC “Diseño e implementación de un sistema de control perimetral para seguridad en obras de infraestructuras lineales”, que fue presentado el pasado 21 de Diciembre, siéndole concedida la matrícula de honor en el pasado mes de enero. Tras este primer desarrollo, se trabajará junto con la empresa Valoriza Infraestructuras para probarlo en entornos reales y evolucionarlo, con el fin de emplearlo en un futuro en este tipo de trabajos.

Apuntes de diseño para carcasas impresas en 3D para circuitos electrónicos

Este articulo va enfocado a detalles concretos a la hora de hacer carcasas para placas de circuitos, como su fijación a la carcasa, protección y soporte mecánico.

Primero, dependiendo de la función de la placa de circuito, tendremos que ver qué requisitos ha de satisfacer la carcasas, puede ser simplemente recubrir el circuito para poderlo instalar en algún sitio, transportarlo, o puede ser más concreto cómo proteger del agua, polvo, de golpes, o proveer soporte mecánico para los conectores.

Dimensiones y tolerancias

A la hora de diseñar los huecos con el fin de que encajen las piezas, es importante ajustar las medidas dejando un margen o hueco extra para que puedan entrar bien teniendo en cuenta las tolerancias de impresión.
Aunque es muy dependiente de los ajustes que imponga el slicer a la hora de imprimir (grosores de capas, etc.), es bastante habitual que tras imprimir, el objeto sea ligeramente más ancho en todas las dimensiones, lo que lleva a que hay que tener en cuenta este ensanchamiento y un ligero margen para poder insertar las piezas. Esto es más notorio en bordes circulares (p.e. un hueco para un botón).

También tener en cuenta que no es lo mismo que encajen dos piezas de plástico que puedan haber sufrido este ensanchamiento, que encajar una placa de circuito, que se supone que las dimensiones finales son suficientemente precisas (si no lo son, pues mejor pedir a otra fab de PCBs…), en un hueco impreso en plástico.

dimensiones2 dimensiones1

En las impresiones que se realizan en el laboratorio (empleando la impresora BQ Witbox y el slicer Cura), un valor de margen de 0,5mm en cada dimensión suele llevar a un ajuste más o menos estrecho entre dos piezas de plástico, mientras que para un ajuste similar de una PCB en plástico puede ser suficiente con 0,3-0,25 mm. Estos valores son similares para otras impresoras comerciales (Ultimaker 2, Series 1).

Fijación (de la PCB a carcasa y tapas)

Para sujetar la placa a la carcasa, y las posibles tapas, se pueden emplear pestañas o tornillos.
Las primeras pueden ser por fricción, es decir, quedando comprimidas por la otra pieza; o porque encajan en un hueco realizado en la otra pieza. Debido a que suelen requerir un ligero voladizo en la impresión, requieren bastante cuidado al imprimir (y probablemente varios intentos hasta que se impriman bien), además de que, debido al método de impresión (capas), no suelen ser muy duraderas.
En cuanto a los tornillos, tenemos dos tipos que se pueden emplear fácilmente, los autoroscantes y los de tornillo-tuerca (sin punta). Los primeros se basan en formar la rosca en el primer atornillado, y sólo requieren un orificio cilíndrico de un radio similar, pero, por las baja resistencia del plástico impreso, no son muy fiables, especialmente si se ponen y se quitan varias veces.

Los tornillos de tornillo-tuerca pueden atornillarse sobre plástico de igual forma (y con similar fiabilidad), pero con estos se pueden emplear inserciones roscadas, que son unos casquillos metálicos con estrías en las que se enganchan transversalmente al tornillo, y que tienen las rosca del tornillo en la parte interior. Estos son los que proveen mayor resistencia y repetidos montajes.
A la hora de realizar el orificio para albergar la inserción roscada, suele ser recomendable hacerla lo más ajustada posible, e insertar la inserción calentándola con el soldador de manera que quede el plástico conformado las estrías y quede sujeta.

En estos, es típico usar métricas M2, M2.5 o M3 para fijar la placa, en cuanto a los orificios y clearance en la PCB, puede verse información aqui. Es también recomendable echar un ojo a las longitudes típicas de los tornillos en los distribuidores para evitar tener que cortarlos.

threaded insert 67 torx8589931425584623585

Tapas y juntas

Para las tapas, si no tenemos problemas de que no deba entrar polvo, agua o similares, es suficiente con una tapa simple, cerrada por pestañas o tornillos. Sin embargo, se pueden realizar dibujos de juntas en ambas piezas para cerrar mejor el conjunto o que queden mejor alineada tapa y caja. En la imágen se puede ver un par de ejemplos.

tapas1tapas2

En la de la derecha se puede, en la parte de abajo, hacer un hueco más profundo, y aplicar silicona líquida o similar para hacer una junta más segura.

Otros detalles

En cuanto a conectores, si vamos a tener alguno que se use intensivamente, podemos añadir elementos que alivien parcialmente el estrés mecánico. En conectores de conexión vertical (típicamente through hole), el esfuerzo suele en la PCB, flexionándola en cada ciclo, y podemos añadir apoyos alrededor del conector para que la carcasa sujete a la PCB y sufra menos. En conectores de conexión lateral, podemos hacer que la carcasa sujete el conector, tanto por detrás como en el marco exterior, para evitar que el estrés afecte solamente al cobre de la PCB (conectores SMD) o en los soportes plásticos del conector (thorugh hole).

conectores

En algunos casos, a la hora de imprimir, puede ser que se requieran detalles a la hora de general el gcode, como paredes ligeramente más gruesas (p.e. en las inserciones roscadas), o malla interna más densa (si tiene que soportar golpes), todo esto se configura en el slicer.