Blog

Oferta TFTs curso 2017/2018 1er Semestre

De cara a poder aprovechar el verano para familiarizarte con tu Trabajo Fin de Titulación (TFG/TFM) hemos preparado esta oferta para el nuevo curso. Si estás interesado, por favor, envíanos un correo electrónico con tus preferencias en orden de prioridad. Se aceptarán solicitudes hasta el 15 de Septiembre para empezar a trabajar la semana del 18 de Septiembre.

propuesta2017dic_TFTs (actualizado el 22 de Diciembre de 2017)

Os esperamos!

TFG: High mobility Brigadier General (OF-6) wireless Command and Control Center design applying “Human-Centered Design” methodologies

A high mobility Command and Control Center a the Brigadier General (OF-6) level (PCBRI) contains from twenty to thirty operator workstations. Each workstation consists on a computer connected to SIMACET (Command and Control Spanish Army digital network) and a telephony terminal. According to the PCBRI layout it supposes between three and five kilometers of signal wire.

Each time the PCBRI moves from one location to another one means removing and recabling several kilometers of wire and about three hundred wire connections. On the other hand beyond the work, personnel and material the main problem is the unavailability of the Command and Control Center between jumps and the connections reliability.

The development of a new wireless Command and Control Center was considered as a good challenge for applying “Human-Centerd Design” methodologies and the “Brigada Guadarrama XII” created a working group acting as final user, the Research Group “B105 Electronic Systems Lab” (Universidad Politécnica de Madrid) as technological and methodological partner, the Colegio Universitario de la Defensa (Zaragoza) both as technological and educational partner, the company Teldat and the Escuela Politécnica Superior del Ejército de Tierra as observer for, applying this methodology, develop a prototype to work inside of the PCBRI without wires.

The results of this project, apart of the experience of applying Human-Centered Design and SCRUM methodologies within the Spanish Army, is the development of a prototype of a high mobility Command and Control Center that copes with the demands of the Brigade where time and effort have been fully controlled. Main features are:

  • Phantom Digital system over the SIMACET network (The developed system is transparent to the legacy network)
  • If you look at this website, VoIP phantom system supported by an smart switchboard allowing intelligent routing and voice recording running over a legacy NAVARRA station
  • Electromagnetic shielding with several choices in the binomial cost-attenuation according the mission requirements

TFG: DESIGN AND IMPLEMENTATION OF AN INDOOR POSITIONING SYSTEM TO LOCATE PEOPLE THROUGH A WIRELESS SENSOR NETWORK

A Wireless Sensor Network or WSN is a set of stand-alone devices that communicate with each other wirelessly. These networks consist of devices with low resources and wireless connectivity and are able to monitor different parameters.

Wireless sensor networks are intended for a multitude of environments, whether at an environmental (temperature, humidity), industrial or private (home automation, remote control) level.

The main objective of this project is to locate by means of a WSN to the members of laboratory. This information will be captured through small wireless devices made during this project. This information will be valuable both to know the availability and presence of the members of the laboratory and to optimize other systems such as lighting, air conditioning or common workstations.

The B105 Electronic Systems Lab has an intelligent environment that monitors different environmental aspects such as temperature, luminosity, humidity, etc. In this project it is proposed to develop the hardware and software necessary to detect the position of the members of the laboratory. In this way, each person will carry a device that sends the necessary information to the nodes of the network to position that person. Considerations such as low consumption, communications and data processing will be taken into account. The designed device is shown in the following image.

 The designed device

ALL-IN-ONE. A low-cost and extended information integrated traffic monitoring platform

 

Traffic information has multiplied by three its volume market in the last five years. It is also expected that will continue growing greatly in the next years.

However, there are some fields still to be studied and probably exploited regarding traffic information. Such is the case of the integration of both the number of cars and their proper identification.

That is the starting point for the “All in One” project whose objectives are to create an integral traffic monitorization platform with low cost hardware and extended information.

Foto All-in-One

The hardware platform developed will have one radar device for counting vehicles and a Bluetooth interface for identifying them. With this data available and using data integration techniques it will be possible to achieve a level of traffic information yet unknown.

Our group, the B105 Electronic Systems Lab is the one in charge of designing and developing the low-cost radar system. This system includes the electronic for adapting and handling the RF signals as well as the processing modules and digital filters for those signals.

In this project, there are other research groups and some companies involved. As research groups, we are working together with i3-UPM and CEI. The companies we are collaborating with are ACEINSA, KINEO and IPS. This consortium will allow to achieve the project objectives by integrating some partners with expertise in each of the modules of the whole system.

MinecoFeder