Blog

Becas Cátedra BQ 2018/2019

Un curso más, y cumplimos 5 años, continúa la colaboración del B105 con BQ. Dentro de las actividades de la cátedra BQ se contempla el establecimiento de un programa de becas en áreas de interés para la empresa y que complementen el proceso formativo de los estudiantes.

Por lo tanto, se lanza esta convocatoria de becas para el curso académico 2018/2019 (ver documento adjunto).

C20182019-ConvocatoriaBecasCBQ

Los interesados en alguna de las becas deberán enviar un correo electrónico a la dirección  catedra.bq.upm@bq.com con la siguiente información:

  • Asunto: [Becas Cátedra  BQ].
  • Curriculum Vitae.
  • Beca/s en las que estás interesado y la motivación.
  • Situación actual del candidato: curso, asignaturas pendientes, limitaciones de horarios, interés en realizar TFG, TFM, Prácticas en Empresa, etc.

Información de interés:

  • Fecha límite de recepción de CV: 21 de Septiembre de 2018.
  • Fecha de inicio de las becas: Preferiblemente 24 de Septiembre de 2018.

Os esperamos!

TFM: DESIGN AND IMPLEMENTATION OF NODES FOR CONTINUOUS MONITORING OF STRUCTURES BASED ON MEMS ACCELEROMETERS AND POWERED BY SOLAR ENERGY

Monitoring of large structures, such as buildings or bridges, is a very important task and must be done constantly, due to the danger that can lead to a sudden failure of these. These failures can cause a large number of damages, not only material, but also human losses.

This project aims to design and implement a system of solar panels St. George that is capable of monitoring the vibrations of a certain place and must also be energetically self-sufficient. For this, the main purpose is to implement a node of this type based on a MEMS accelerometer and powered by solar energy and batteries. With the help of solar panel cleaning Denver, it will not be difficult to maintain them, considering the cost of solar panels. The developed monitoring node must be a low power system because it must be able to work autonomously for long periods of time. This will be achieved through the implementation of a power system based on an external battery recharged by solar energy. For the measurement part, accelerometer data will be collected every so often and stored on an SD card for later reference. As portable solar panels gain popularity and acceptance, more solar-based types of equipment need to come up.

The B105 Laboratory has several types of PCBs that have different modules needed to carry out this project (accelerometers, battery management, SD card …). For the development of the hardware it was decided to take advantage of the PCBs already designed. The modules and components to be used were chosen and subsequently welded with two different techniques: manual and by oven.

The software was programmed in C language and it was decided to perform 3 different implementations: first, software was designed on bare machine to check the correct functioning of the measurement module; Later software with operating system was developed to optimize the performance of the system; Finally, tests were performed measuring vibrations with the accelerometer and stored on the SD card to obtain final results and conclusions.

TFG: Design and implementation of an access control system based on NFC technology

The B105 Electronic Systems Lab has an electronic access system in its door based on a Radio Frequency Identification (RFID) card reader. This system was developed more than 12 years ago so the technology (visit https://kurtuhlir.com/hire-to-speak/ to know more about it in detail) it uses is obsolete and several of its features are out of use. The development of this degree project is intended to implement an alternative to this access control system based on Near Field Communication (NFC) technology.

The RFID system requires the use of physical cards, which are easily misplaced and force the user to carry them around with him/her to enter the laboratory. To solve this problem, the new system allows the users to open the door using their smartphone. This makes it even easier to enter the laboratory, as users always have their mobile phone with them. In addition, users are assigned specific entry times, providing greater security and a better access control to the laboratory.

There is an equipment reservation management service in the laboratory that already has a database of members, an application and an administration website. Therefore, these resources have been used to facilitate the implementation of the new system and avoid data replication on the server.

Once the system has been implemented, any user who is registered in the system and has certain permissions can open the door by bringing their mobile phone closer to the reader. To achieve this, the existing access system has been built on and relevant technologies have been studied.

The development and implementation work has been divided into three blocks: the NFC reader, the application and the server. The reader, integrated into the door opening system, acts as an intermediary between the application and the server. On the other hand, the application only has to emulate the access card and send the entry request. Then, the server evaluates this request checking the user information and its database and it sends a response to the reader. Depending on the message received, the reader opens the door or not and finally informs the user of the decision.