El eSpMART105 toma forma

Imagen 1

Dentro de la colaboración del B105 ESL con la empresa Valoriza nace el proyecto Lázaro, con el objetivo de crear un sistema para la detección automática de barreras usando visión por ordenador y realidad aumentada.

Además de este primer objetivo, el proyecto persigue otra importante meta, el desarrollo de una red de sensores inalámbrica para monitorizar las condiciones de vida de personas con necesidades especiales, como ancianos o personas con minusvalía.

Es dentro de este segundo objetivo donde nace nuestro wearable: eSpMART105.

El dispositivo que hemos desarrollado es una pulsera, capaz de medir la temperatura (ya sea ambiente o corporal del paciente), medir su ritmo cardíaco, su saturación de oxígeno y monitorizar su actividad diaria, detectando posibles caídas y avisando al personal que se encuentre a cargo de dicho paciente.

Imagen 2
Pulsera eSpMART105

Gracias a una aplicación móvil para Android, también desarrollada por nosotros, el personal sanitario puede en todo momento consultar el estado del paciente, ver un registro de sus últimas medidas, así como cambiar la periodicidad de las mismas, consultar su historial clínico, recibir alertas sobre posibles valores anómalos en el paciente o caídas y administrar, sencillamente desde el móvil, a todos los pacientes de la residencia.

Main_Activity2
Una de las vistas de la aplicación

La comunicación entre la pulsera y el móvil se realiza mediante Bluetooth Low Energy, el más actual de los estándares Bluetooth disponibles.

Además, en caso de que se detecte un evento de gran peligrosidad como una caída o un pulso anormalmente alto, la pulsera es capaz de realizar una búsqueda exhaustiva de puntos de acceso Wi-Fi almacenados en su base de datos y establecer conexión con ellos, enviando el aviso. Esto hace a nuestra solución capaz de comunicarse con dos de las tecnologías inalámbricas más ampliamente usadas en el mercado actual. Todo ello con un consumo muy bajo, que permite a la pulsera (dependiendo de los intervalos de medición de parámetros del paciente) una vida de hasta dos semanas. Para el desarrollo de esta pulsera nos hemos basado en el ESP32, un dispositivo genial para desarrollo debido a su integración en un reducido tamaño de Wi-Fi y Bluetooth, así como numerosos GPIO’s, I2C, SPI, UART, control para pantallas táctiles y mucho más.

Imagen 3
ESP32

La caja de la pulsera, así como su correa es también diseño nuestro. Ha sido impreso en material 3D, recurriendo a filamento rígido transparente para la caja, pues la rigidez de este material aporta robustez mecánica al diseño, y material blanco flexible para la correa, compuesto que la hace más cómoda de llevar.

Paralelo a este desarrollo hemos recurrido a relojes de la marca Pebble, que permiten programar aplicaciones en C e incorporan también comunicación Bluetooth y sensor de ritmo cardíaco. Gracias a este reloj podemos obtener datos nuevos del paciente como su nivel de actividad, sus pasos diarios y una segunda medición de ritmo cardíaco, que aporta robustez a la medida de nuestro sistema. Los datos que recoge esta otra pulsera son también enviados a la misma aplicación de Android, quedando por tanto, toda la información del paciente centralizada.

LÁZARO: Development of an innovative ICT system for the detection of architectural barriers and monitoring based on augmented reality

interiorAR

 

LÁZARO is a project carried out alongside Valoriza Servicios a la Dependencia S.L.U., with the objective of developing a system to automatically detect architectural barriers making use of computer vision and augmented reality. It will integrate the detection provided by sensors and images and the display of an augmented reality layer, together with a warning and checking system for the barriers.

In addition to the first objective, the project pursues another important goal, the development of a wireless sensor network to monitor the living conditions of people with special needs, such as elderly or disabled people. Therefore, the system will result in an integral solution for assisted living facilities and residences, although it can be applied to several other environments.

_JFF3543

The project details are as follows:

Title: LÁZARO: Development of an innovative ICT system for the detection of architectural barriers and monitoring based on augmented reality
Duration: 2016-2017
Partners: Valoriza Servicios a la Dependencia S.L.U. and Universidad Politécnica de Madrid
Financing entity: Valoriza Servicios a la Dependencia S.L.U. via CDTI.

Logo CDTI-MINECO con Gill Sans

Avances en el proyecto LÁZARO

fotoarticulo

¡El Proyecto LÁZARO para la detección de barreras arquitectónicas y sensorización sigue avanzando a buen ritmo!

Finalmente una de las ideas de diseño que abordaremos, en el lado del paciente, será el uso de un dispositivo wearable (un reloj), dotado de comunicación por puerto serie, que se conectará a una placa de desarrollo con funcionalidades Wi-Fi, Bluetooth y sensado de temperatura del paciente.

Ya hemos recibido los primeros prototipos para las placas que implementarán todo el diseño y que podéis ver en la foto que acompaña a esta entrada. En breve comenzaremos a montar en ella los componentes y a comenzar las primeras pruebas, una vez que el software sea funcional. ¡Estamos muy ilusionados con este proyecto!

Para el reloj hemos recurrido a la compañía Pebble, aunque una línea futura en la que nos gustaría trabajar es en el desarrollo de nuestro propio wearable, que nos permitirá un grado de personalización y optimización mucho mayor.

Para las comunicaciones móviles nos apoyaremos en el módulo ESP32.

¡Os seguiremos informando según avance el proyecto!

Robot minero: desarrollo de un sistema prototipo automatizado de perforación vertical de barrenos para su aplicación en la industria minera

rolatec

La minería en España presenta, en las últimas décadas, un déficit de desarrollo tecnológico muy importante. Son muy pocas las aportaciones novedosas a este área que conserva, en muchos casos, técnicas manuales o mecánicas para el desarrollo de la labor. Por ejemplo, durante estos años se ha recurrido a métodos de explotación tradicionales, caros, con poca o ninguna modernización, inseguros y de bajo rendimiento. Por otro lado, los depósitos de minerales se depositan como filones o venas estrechas, de 1 a 1,5 metros. Estos filones son un recurso primario muy importante, pero representan un desafío tecnológico complejo. Todo esto hace que la mejorar de la explotación y la seguridad en la minería sea un campo a mejorar.

Mina de San Finx
Mina de San Finx Flickr: divadar01

Este proyecto pretende desarrollar un robot que asista en la realización de tareas en la obra, como perforaciones, y que monitorice el ambiente de la mina para mejorar la seguridad. Esto se puede realizar mediante sensores de gases y otros parámetros, como la humedad o la temperatura.

Los datos del proyecto son los siguientes:

Título: Robot minero: Desarrollo de un sistema prototipo automatizado de perforación vertical de barrenos para su aplicación en la industria minera
Duración: 2015-2017
Consorcio: Valoriza Minería y Universidad Politécnica de Madrid.
Entidad financiadora: Valoriza Minería a través de CDTI.

Logo CDTI-MINECO con Gill Sans

SIMBIOSYS: Simulator Biometric System plug-in

DATOS

One of the major problems facing the drivers of different vehicles is the difficulty of anticipate and react to the health-related problems that the operator may have.

465

 

For this reason, the goal of this project is the development of a simulator system that allows to prevent and/or report states in the machine operator that can compromise the safety of the people. It will detect physical states (tachycardia, bradycardia, hypoxia, hypotension, etc.)  as well as psychics (stress, drowsiness, alertness,etc.).

To achieve this, the system will use biometrics sensors, such as breast bands or weareable bracelets to obtain the measures of heart rate or oxygen saturation. But the main sensor we are interested in is a EEG sensor that sends the raw electroencephalography. 

Imagen2

 

The B105 Electronic Systems Lab. as a representative of Technical University of Madrid(UPM) participates with Valoriza in this innovative research project. To develop it we have the support of the Industrial Technological Center (CDTI) and the Ministry of Economy and Competitiveness.

IndustriaEnergiaYTurismo
Logo CDTI-MINECO con Gill Sans

NODUM – DESARROLLO DE INNOVADORES SISTEMAS DE SEÑALIZACIÓN PARA IDENTIFICACIÓN DE OBRAS EN CARRETERAS

15_2

Las obras realizadas en carretera presentan una gran influencia en la seguridad vial, generando en algunas situaciones una importante fuente de riesgo tanto como para los trabajadores como para los usuarios de la vía, por ejemplo, cuando los trabajos han de realizarse en una carretera abierta al tráfico.

obras-carretera-m-611

El objetivo del proyecto es el desarrollo de un nuevo sistema de señalización, adaptable a las condiciones particulares de cada escenario y permitiendo la actualización en tiempo real sobre la información sobre las distintas situaciones del tráfico.

La infraestructura  a realizar debe permitir una correcta evaluación del riesgo percibido por parte del usuario, evitando en la medida de lo posible que éste sea sorprendido. Si las obras en la carretera son adecuadamente percibidas por el usuario, éste tendrá capacidad de reacción de forma prematura ante un posible percance.

Para la realización de este proyecto, se va a apostar por la investigación en tecnología OLED debido a características como eficiencia, poco peso, elevada fuente de iluminancia o robustez en la intemperie.

oled_flexibles_lg

Este proyecto cuenta con la participación de Valoriza Conservación de Infraestructuras, el B105 Electronic System Labs, Estudios COEX y CDIM. La entidad financiadora es el Centro para el Desarrollo Tecnológico Industrial.

 

Logo CDTI-MINECO con Gill Sans

 

 

 

Easysafe – Sistema de alarma precoz para la seguridad en la carretera

IMG_8508

La seguridad vial es una de las mayores preocupaciones actualmente y por ello, desde las instituciones y empresas se está fomentando la investigación y el desarrollo de nuevos sistemas que mejoren este aspecto. El B105 participa en este proyecto de cara a mejorar la seguridad mediante la electrónica, la sensorización y las comunicaciones inalámbricas.

yetimote

El objetivo de este proyecto es el desarrollo de un innovador sistema comercializable y de bajo coste, basado en nodos inalámbricos con capacidades cognitivas capaz de mejorar la seguridad de las infraestructuras y con ello, disminuir el número de fallecidos. Para su diseño se partirá de las siguientes premisas: Elevada autonomía, bajo coste y elevada versatilidad, de tal forma que, tras el éxito en su desarrollo, este sistema pueda disponer de una aplicación mucho más amplia. Dentro del presente proyecto, vamos a desarrollar e implementar, como punto de partida, un sistema capaz de dar una solución real a las tres problemáticas que detallamos a continuación, que poco a poco, irá cubriendo otras necesidades:

  1. Presencia de fauna en calzada.
  2. Vehículos que circulan en sentido contrario.
  3. Cruces en las que la vía prioritaria tiene una baja IMD.

Este proyecto cuenta con la participación de Valoriza Conservación de Infraestructuras, el B105 Electronic System Labs y Allianz. La entidad financiadora es el Ministerio de Economía y Competitividad.

logo_mineco_0

“Diseño e implementación de una algoritmo para el reconocimiento de imágenes de carreteras con la herramienta OpenCV

unnamed

El trabajo desarrollado durante el Proyecto Fin de Carrera, titulado “Diseño e implementación de una algoritmo para el reconocimiento de imágenes de carreteras con la herramienta OpenCV”, ha consistido en la elaboración de algoritmos que permita extraer, de forma automática, características de las carreteras a través de vídeos mediante la herramienta de análisis y tratamiento de imágenes OpenCV. Principalmente, el proyecto se ha centrado en la extracción de dos parámetros que integran la calzada como es el número de carriles y el ancho de los arcenes.
Para la extracción del número de carriles se contemplaron algunas técnicas como la determinación del punto de fuga con el fin de que sólo quedasen las líneas viales de la calzada. Finalmente, tras haber probado estas posibilidades, el algoritmo final implantado para este objetivo se ha centrado en la variación de intensidades al convertir la imagen a escala de grises con el fin de buscar las transiciones negro-blanco-negro como se puede ver a continuación:

Curva intensidades antes y después del filtrado

La curva resultante (color amarillo) es el resultado de la conversión RGB a escala de grises a través de una curva de muestreo (color azul). Analizando visualmente la curva amarilla, se puede apreciar que, cuando la curva de muestreo corta con las líneas delimitadoras de carril, existen variaciones bruscas en la curva (color verde), las cuales se corresponden con la posición en la que están situadas las líneas blancas (color amarillo). Para estabilizar esta curva, y con el fin de aislar estas variaciones de forma sencilla, se aplicó un filtro paso alto (color morado) y, posteriormente, un umbral que nos permitiese determinar la posición de las posibles líneas viales.

Este análisis se realizaba cada 30 segundos, sumando un 1 en aquellas posiciones horizontales en las que se ha determinado la existencia de un blanco, con el fin de generar un histograma al cabo del periodo analizado, como el de la siguiente imagen:

unnamed

Imponiendo un umbral a dicho histograma, se procedía a extraer las posiciones de las líneas viales continuas (líneas verticales amarillas) y las posiciones de las líneas delimitadoras de los carriles existentes entre ambos límites (líneas verticales moradas), determinando finalmente el número de carriles.

Por otra parte, el algoritmo realizado para la extracción del ancho de los de los arcenes se basó en la extracción de una vista superior parecida al de los mecanismos de inversión de perspectiva IPM (bird’s eye).

unnamed (1)

A diferencia de este procedimiento, no se tenían datos relativos a la posición de la cámara, pero era interesante obtener una vista que se pareciese a esta vista, ya que se podría extraer con más facilidad los límites de los arcenes. Para ello, a través de la misma línea de muestreo usada para el objetivo anterior, se procedía a acumular, en otra imagen, lo que dicha curva iba detectando. El resultado se ve en la siguiente imagen:

Vista superior generada por curva de muestreo

La vista generada resulta parecida a las generadas por los mecanismos IPM, con la salvedad de que no se deshace la perspectiva. Con este tipo de imágenes y usando una segmentación basada en leves variaciones de intensidad a partir de la posición de la línea continua, tras la conversión de las imágenes a escala de grises, se extrae una aproximación, sabiendo la medida del carril, de la medida del ancho de los arcenes, tal y como se ve a continuación:

Extracción de límites de los arcenes