In the past few years, technological developments have allowed the invention of aid systems for disabled people. Related to visual impairment, many of these systems have focused on achieving a correct guidance for these people.

There is an open research line in the B105 Electronics System Lab which is focused on this field. Specifically, its goal is to give more autonomy to blind people to move around cities, building interiors… To make this possible, a system provides acoustic and tactile information through sensory substitution. However, the user’s experience is limited because of these tactile stimuli are generated by a smartphone. Therefore, this branch of the research has a lot of room for improvement.

This graduate thesis is focused on the development and implementation of a device able to provide a better tactile experience with haptics stimuli based on the user’s movement.

To achieve this goal, this project has started doing an analysis of the most appropriate method of haptic simulation. Factors such as human physiology or the study of the actual haptics technology have been considered. Based on the chosen option, a printed circuit board (PCB) that allows motion capture and the desired stimulation has been designed.

Furthermore, some software tools have been developed to offer this haptic. This task is divided into two phases. The first part is the generation of the code that allows the management of the actuators and the reproduction of tactile effects. The second, is the construction of some tools to define the device’s orientation. A library for operating with quaternions and an application for obtaining the coordinates of a direction vector of the PCB have been elaborated.

Finally, the project concludes by making multiple tests on a development platform. The goal of these experiments is to verify the correct implementation of all the designed tools. The results show that it has been possible to support useful functionalities in research on sensory substitution. Some of these experiments are compiled on the following YouTube channel:

TFG: Design and implementation of a wearable system for livestock

Today, the use of monitoring systems is widespread in society. However, it is not common to see them in animals.

This end-of-grade work aims to design and implement a wearable system for cows, horses, sheep and goats. Thus, the farmer can know the state of the animals and their location. Taking into account the signs and characteristics that occur in this type of animals in situations of interest, the system has several sensors: a microphone, a temperature and humidity sensor, a gyroscope, an accelerometer, an air quality sensor, a gas sensor to detect diseases and a GPS.

Thanks to the information of these sensors it is possible to know when the animal is sick, has problems walking or even the period of heat of the females and later the time of delivery.

Finally, all data is sent to the farmer to make decisions on the farm, improving the welfare of the animal and increasing its productivity.

For the development of the system, the complete hardware design and implementation was carried out, in addition to the realization of a hardware abstraction layer (HAL) for all sensors.

TFG: Development of a system for motion analysis

Obtaining information about the motion of an object has many applications in today’s society. Large industries such as cinema or videogames use motion capture technologies for their development. Motion capture systems collect the information that allows to know the acceleration, speed, orientation and position of an object.

The development of MicroElectroMechanical Systems or MEMS by the end of the 1980s has increased the use of accelerometers and gyroscopes to increase motion capture. That led to the development of Inertial Measurement Units with a small size, resulting from the combination of accelerometers and gyroscopes. This miniaturisation enabled the use in other applications, like augmented reality, 3D animation, navigation, video games and sports . Another of its features that stands out is that it does not need an external reference to be used, resulting in a simpler implementation.

In this graduate thesis, a system has been developed that can collect the data generated by an IMU, store it and then dump it into another system for analysis. Some criteria were needed to be established, so the design is focused on been small and low power consumption. For the development of the system, a hardware design was made, followed by the implementation of the software. Finally, some test were made to evaluate the final result.