Visita del CIDAT

Como podrán apreciar los lectores frecuentes de nuestro blog, las lineas de investigación de nuestro grupo abordan temáticas muy diversas. La que trataremos en este artículo está orientada mejorar la percepción espacial por medios no visuales. Para ello, utilizamos una red de dispositivos “wearables” que generan estímulos hápticos y acústicos de acuerdo a teorías recientes en materia de sustitución sensorial.

El objetivo principal es que una persona con discapacidad visual grave o ceguera tenga menos dificultades a la hora de desplazarse por la ciudad, en interiores, etc. Nuestro primer prototipo, Virtually Enhanced Senses (VES), virtualiza las características más importantes de un escenario real desde una perspectiva de orientación y movilidad, y proporciona la información al usuario de forma intuitiva.

Recientemente hemos tenido la suerte de contar con personal del CIDAT para la evaluación y posterior perfeccionamiento del prototipo. Durante las reuniones y demostraciones de la tecnología, los usuarios finales pudieron experimentar de primera mano el sistema tanto en escenarios virtuales como reales.

Desde aquí queríamos agradecer a nuestros invitados por su tiempo, esfuerzo e ilusión, esperando vernos de nuevo en un futuro próximo.

A Methodology for Choosing Time Synchronization Strategies for Wireless IoT Networks

This summer we have published a new article about time synchronization for wireless sensor networks, applied to the field of IoT, in Sensors Open Access Journal. This journal has these statistics:

  • 2018 Impact Factor: 3.031
  • 5-year Impact Factor: 3.302
  • JCR category rank: 15/61 (Q1) in ‘Instruments & Instrumentation’

This article belongs to the Special Issue Topology Control and Protocols in Sensor Network and IoT Applications.

This article has a direct relationship with the thesis of our colleague Francisco Tirado-Andrés. This thesis investigates a methodology, and associated tools, to make it easier for all researchers to choose time synchronization protocols for specific WSNs.

For more information about this article please visit MDPI webpage.

TFG: Design and implementation of a wearable system for livestock

Today, the use of monitoring systems is widespread in society. However, it is not common to see them in animals.

This end-of-grade work aims to design and implement a wearable system for cows, horses, sheep and goats. Thus, the farmer can know the state of the animals and their location. Taking into account the signs and characteristics that occur in this type of animals in situations of interest, the system has several sensors: a microphone, a temperature and humidity sensor, a gyroscope, an accelerometer, an air quality sensor, a gas sensor to detect diseases and a GPS.

Thanks to the information of these sensors it is possible to know when the animal is sick, has problems walking or even the period of heat of the females and later the time of delivery.

Finally, all data is sent to the farmer to make decisions on the farm, improving the welfare of the animal and increasing its productivity.

For the development of the system, the complete hardware design and implementation was carried out, in addition to the realization of a hardware abstraction layer (HAL) for all sensors.


This final project focuses on the field of robotics aimed at developing automated prostheses, helping to recover part of the lost mobility of people who need it. More specifically, it will focus on analysing and designing a wirelessly controlled robotic arm, which will serve as the basis for future projects at the B105 Electronic Systems Lab.

To this end, a preliminary study was carried out of the technologies currently used to develop a robotic arm, extracting which components can be used to carry out the movement and control of the arm, what considerations must be taken into account to design the different parts that make it up and what prototypes currently exist, extracting their characteristics to try to find a way to improve them.

Once the previous study had been done, the design of the arm was carried out, where the way to control it, the type of wireless communication, the motorization to be used and how it is fed were chosen. After this, we have chosen the components that best suit to meet the specifications requested, the modeling program has been used to design the parts, the materials used to build them, and the type of manufacture used to make them. It has been concluded that the parts must be manufactured by 3D printing, that Bluetooth will be used as technology for wireless communication, and servomotors to motorize the system.

Afterwards, the connection has been made, the design of the pieces by means of a 3D modeling program and the subsequent manufacture of part of them by means of 3D printing. A mobile application has also been developed to control several servomotors and check the wireless connection between the arm and the mobile, in addition to having created several integration files on the board to check the operation of the components.

Then different tests have been carried out, using the software created, where different components have been connected, and it has been checked whether they work correctly or not.

In the end a complete functionality has not been achieved, but a partial functionality has been achieved where it has been possible to connect by means of Bluetooth the mobile and the arm, to move two servomotors, with which two fingers have been moved, and the battery has been controlled by means of a series of leds. Several problems have also been found with regard to the power supply of the servomotors and the reception of data sent by the board that controls the servomotors to the mobile.

TFM: Development of a vehicle monitoring system based on NB-IoT technology

Nowadays, several European cities are looking for ways to regulate their internal traffic due to the high concentration rates of pollutants present because of vehicles. These concentrations cause hundreds of thousands of premature deaths in Europe per year, so it is beginning to be considered as a risk factor for its citizens. In most of the cities that implement some type of restriction, the regulation of this traffic is carried out by establishing a fixed low emission zone controlled by cameras.

In this context, the aim of this work is to provide an alternative to the conditions for access to these restricted zones, which are generally based on the Euro standard met by each vehicle. Thus, a device has been developed that connects to the vehicles by means of the OBD II standard, obtains its geolocation and transmits the acquired data using the NB-IoT technology. The purpose of these data is to obtain an estimate of the emissions produced by vehicles individually and based on actual traffic data, with which to regulate the access to the restricted zone. To this end, the COPERT emissions estimator has been incorporated based on speed data with a half-second time interval. This provides an opportunity to create fairer driving conditions based on the particular emissions of each vehicle within the restricted zones. In addition, it allows the creation of dynamic zones that can be a palliative for the border effect that could occur with a fixed zone. With this change of perspective, we can restrict more or less the traffic depending on the pollution situation in the city. Another improvement is the regulation of other pollutants like carbon monoxide or methane.

The developed system is powered by the vehicle battery, uses OBD II through the CAN bus or the ISO 9141 to communicate with the vehicle and obtains the location using a multi-constellation. A PCB has been designed that integrates three modules that carry out the tasks of communicating with the vehicle, transmitting the data to a central server and establishing of the geolocation of the vehicle; as well as a microcontroller in charge of the coordination between these elements and communicating with the user through commands.

A vehicle ECU simulator has been developed in order to debug the system and check that the data obtained are related to the expected values without the need to be permanently connected to a real vehicle during development. The objective was to create a simple simulator that would implement CAN bus communication and could respond to requests from an OBD II port.

Several tests have been carried out with the developed system on board a vehicle during a real journey. Their results allow us to see a distribution consistent with what was expected in terms of the concentration of pollutants emitted. Thus, we have empirically proven that the concentration of pollutants increases on narrow and slow roads and decreases on wider roads. From these tests the correct functioning of the final system and, therefore, the fulfilment of the objectives are confirmed. The result of a test made with a Euro 6 diesel car can be seen in the following picture, where we can see the NOx estimated emissions.

TFG: Development of a system for motion analysis

Obtaining information about the motion of an object has many applications in today’s society. Large industries such as cinema or videogames use motion capture technologies for their development. Motion capture systems collect the information that allows to know the acceleration, speed, orientation and position of an object.

The development of MicroElectroMechanical Systems or MEMS by the end of the 1980s has increased the use of accelerometers and gyroscopes to increase motion capture. That led to the development of Inertial Measurement Units with a small size, resulting from the combination of accelerometers and gyroscopes. This miniaturisation enabled the use in other applications, like augmented reality, 3D animation, navigation, video games and sports . Another of its features that stands out is that it does not need an external reference to be used, resulting in a simpler implementation.

In this graduate thesis, a system has been developed that can collect the data generated by an IMU, store it and then dump it into another system for analysis. Some criteria were needed to be established, so the design is focused on been small and low power consumption. For the development of the system, a hardware design was made, followed by the implementation of the software. Finally, some test were made to evaluate the final result.

TFM: Design and implementation of a gateway node based on LTE mobile communications for a Wireless Sensor Network

Wireless Sensor Networks (WSN) research has recently become a key element in the Internet of Things (IoT) concept. These networks use autonomous devices, also known as nodes, whose purpose is to gather information from the environment and transmit it on the internet. We may classify these nodes into two categories: sensor nodes, which extract information from diverse environment parameters; and gateway nodes that transmit this information outside the network.

The main goal of this thesis is the development of a gateway node based in fourth generation mobile communications (4G). This gateway node has been developed both at hardware and software level and should be integrated in a wireless sensor network at future stages.

The hardware for this project is based in a previous design of a modular PCB developed at the B105 Electronic Systems Lab. Some modifications have been introduced in the original design in the power supply, RF and voltage shifter blocks in order to complete a functional prototype. The software architecture has been completely designed and implemented from the very beginning based on YetiOS – an embedded OS developed at the B105 Lab – including a specific API for the module and diverse connectivity functionalities such as call features and TCP/IP communication establishment.

Each hardware and software module has been tested separately and also operation of the whole node. In addition, system performance was evaluated measuring three parameters: consumption, latency and throughput, which are critical in the deployment of a practical application for the node.

The obtained results are discussed at the end of the document, comparing them to the original objectives and finally some working lines are proposed to continue with the node development.

TFM: Development of an electronic system for monitoring people’s parameters

Road safety is one of the objectives of the European Union due to the high number of infractions committed every year by drivers and pedestrians, and the large amount of accidents with fatalities registered in Europe year by year. Therefore, any step taken in order to deal with this problem is beneficial for everyone.

Current technology allows increasing the security measures of vehicles, which, together with consciousness-raising of drivers and pedestrians, take us one step closer to the reduction of these figures. Every day more people decide to use biosensors for controlling their vital signs. The transfer and adaptation of the aforementioned systems to the situation in which a driver is, permit to complement both legal actions accomplished and consciousness-raising measures, improving road safety.

The main objective of this Master’s thesis consists of the development of an electronic system that allows drivers to notice the indisposition to drive, permitting to avoid an accident and also an infraction.

After analyzing the parameters that affect driving and are related to the driver, those that can be monitored in a non-intrusive way and without using disposable material were chosen: body temperature, blood pressure, pulse, stress level, and alcohol level.

All of that has been gathered in a single module formed by three PCBs. Both hardware and software have been designed. The proposal has been assembled and the case and the band have been 3D-printed in order to form the final device with a smart bracelet form factor. This module has been designed with the purpose of having small dimensions and low consumption since it is powered by a battery.

Finally, several tests have been carried out to verify the proper functioning of the system. The biggest challenge was found while obtaining blood pressure based on the photoplethysmography signal. Through those tests, the developed software could be adapted according to the results obtained, since offset values that have to be applied and the times that sensors need could be known. This also permitted to discover errors committed during previous stages of the development process.

Therefore, it can be confirmed that the general objectives set have been accomplished.

Technical viability of the proposal could be proved, and this informs of the existence of several application fields that the project could have, as is the case of professional drivers.

TFM: Development and implementation of a wireless network focused on energy management in home automation

The objective of this Master Thesis is the design, implementation and validation of a wireless node network that will have as target the energy management in home automation environments. This system will be capable of sending the collected data to a server and will also be able to control certain nodes from others. Furthermore, it will operate autonomously, not needing any user intervention to connect a new node to the network or for sending data to the server.

To achieve that, first, existing solutions have been analyzed and three nodes have been built, having each one of them a different functionality. For their construction, both their hardware electrical design and implementation, and their software implementation have been developed. Their stability has also been tested with several communications and functionality tests.

After the initial tests, several aspects of the nodes where found to be improvable, so the boards were revised and build again, one of each functionality, with the detected errors corrected. Along with theses ones, three additional copies (nine in total) were built with a different communications submodule, substituting the original RF chip and its support components.

For the battery-operated nodes, current consumption was measured, and a battery duration was estimated. Also, all these nodes were put under test as part of one common network, where the coverage of the nodes and system stability were checked, among others.

At the end of this document, some conclusions of the obtained results are discussed, and the original objectives of the thesis were checked to see if they have been accomplished.

This group of nodes will be left installed in the laboratory B105 permanently, allowing the increase in the number of nodes and functionality in future work or as a base for future tests.

Desarrollo e integración de nuevos servicios para sistemas IoT de recolección y gestión de grandes datos

At the present time a massive amount of data is being generated by many kinds of devices such as wearables, mobile phones, temperature or humidity sensors and many others. Data could be treated and represented in order to understand and analyse the information the carry within it. The aim of this project is to carry out the software development needed to bring new utilities to the data management and representation platform deployed in the B105 Electronic Systems Lab. Data used by the platform is generated on an IoT environment by different type of sensors. There are many tools developed by third parties in charge of data management and representation, but this project pretends to extend the system developed in the B105 Electronic Systems Lab based on an own web service.

In other to achieve the objectives of this project, some new utilities are going to be developed and the bugs of the previous versions of the platform will be corrected. These include the implementation, among others, of: an authentication mechanism to the platform, a system to export and import data in a simple way or a system to calculate some data statistics. To do so, JavaScript will be used in addition to client-server and server-databases communications.