ALL-IN-ONE. A low-cost and extended information integrated traffic monitoring platform

Foto All-in-One2


Traffic information has multiplied by three its volume market in the last five years. It is also expected that will continue growing greatly in the next years.

However, there are some fields still to be studied and probably exploited regarding traffic information. Such is the case of the integration of both the number of cars and their proper identification.

That is the starting point for the “All in One” project whose objectives are to create an integral traffic monitorization platform with low cost hardware and extended information.

Foto All-in-One

The hardware platform developed will have one radar device for counting vehicles and a Bluetooth interface for identifying them. With this data available and using data integration techniques it will be possible to achieve a level of traffic information yet unknown.

Our group, the B105 Electronic Systems Lab is the one in charge of designing and developing the low-cost radar system. This system includes the electronic for adapting and handling the RF signals as well as the processing modules and digital filters for those signals.

In this project, there are other research groups and some companies involved. As research groups, we are working together with i3-UPM and CEI. The companies we are collaborating with are ACEINSA, KINEO and IPS. This consortium will allow to achieve the project objectives by integrating some partners with expertise in each of the modules of the whole system.


TFM: Implementation and integration of a chart engine oriented to Big Data and it’s application in domotics


IoT (Internet of Things) and Big Data are very relevant today, and they tend to appear together. This happens because the most accepted definition of of IoT is having a lot of wireless sensors generating data continuously. This requires having the infrastructure to be able to save all the data that is generated in databases. However, this presents a problem when doing queries, since queries in big databases (millions of samples) take a long time to finish. Reducing this time is the objective of the following project.

This project consists of a web application (making it cross-platform) that allows management of a database using a simple user interface. It is also able to select a small sample of data (independently of the amount of data in the database) and plotting it. Finally, it can also be used to monitor live data. These last two functions are extremely useful in domotics, since the data that’s used in those applications (temperature, pressure) are very easy to interpret when plotted.


Captura representación gráfica
Screenshot of the webpage used to chart data


In order to carry out this project we used MongoDB, a NoSQL database. This type of databases have big advantages over traditional SQL databases when taking into account the type of data we are going to store, mainly faster speed and more flexibility. For the web server we used NodeJS, this way all the code written for this project is Javascript, both server-side, using ExpressJS to simplify the development, and client-side, using the native API calls for web manipulation present in most modern web browsers.

Lastly, one of the biggest advantages of our project is the ability to add data to the database sending a HTTP request to a certain URL. With this we can save any type of data from any sensor easily, the only requirement is having a node that supports IP in order to send the HTTP request, which is something very common nowadays.

TFG: Design and development of a reliable routing protocol for Wireless Sensor Networks


Wireless Sensor Networks, or WSN, is one of the most promising fields of research when talking about Information Technology, as its use and deployment is extended in developing projects related to Internet of Things.

WSN are composed by multiple wireless tiny sensor nodes called motes, which are equipped with a microcontroller and some sensors capable to measure physical data of the parameter to be monitored. They also feature one or several radio antennas, meant to share the gathered data with the rest of the sensor nodes in the network.

Many projects have been developed using WSN, all of them with the common characteristic of the need of sharing data among nodes. This is achieved by the implementation of a network protocol on the nodes.

Different research lines have been followed and scientific papers have been published related to the field of WSN network protocols, most of them focused on the creation of algorithms and theoretical work rather than on field implementation and actual deployment of the network protocol on physical nodes.

Multihop packet sending between nodes on WSN

The final objective of this thesis is the development of a realiable routing protocol for WSN, which is meant to establish routes among the nodes which later will be used as paths for sending and receiving data. It will be ready to use for stablishing networks on any project based on WSN developed by the B105 Electronic Systems Lab Research Group, regardless of its application or purpose. Multihop will be one of the main features on this routing protocol.

This protocol has been designed to be reliable, customizable and adaptable to the different needs a WSN developer may have. Its code is portable to different motes, and has been developed as a process running within the FreeRTOS operating system, which is node sensor oriented. Besides, the Contiki netstack, Rime, and its customized layer of communication services provided by the B105 Electronic Systems Lab, have been the main sources of primitive communication modules used on the development of this routing protocol.



There is currently a boom in smart devices in all kinds of environments. This is due to the large amount of data and services that they provide us, facilitating our daily tasks. In this context, the design and implementation of an electronic system, to manage a fridge and a pantry situated in a room in the B105 Electronic Systems Lab research group, where there are products for the lab’ users, has been performed. In order to simplify the accounting, track the stock, control the consumption and facilitate the use and payment, a system based in a Raspberry Pi 2 Model B has been developed, composed of a database, a touchscreen and a fingerprint sensor. Additionally, a webpage has been developed to observe the stock and the user consumption.

In order to reach this aim, several phases have been fulfilled. First of all, an analysis of the current situation has been made to decide how to improve it. Afterwards, system requirements have been established. According to them, the available technologies have been analyzed. With the already decided requirements, the hardware and software design has been carried out. Finally, the designed system has been installed and performed all the necessary tests to determine that the system operation is the one desired.

A MySQL database has been designed to store the products, prices, stock, users and virtual wallet data. It is composed of four tables for users, products, consumptions and money movements.

In order to univocally identify the users, it has been decided to use a fingerprint sensor connected to the Raspberry’s UART. Python language has been used for sending and receiving data packets between Raspberry and sensor. It has also been considered the case of a temporary user which can log in as invited, in order to keep all the database’s tables updated and allow him to consume.

As far as communication between users and system is concerned, it has been decided that it is performed by means of a touchscreen, because it is handy, intuitive and its use is very widespread. It displays the graphical user interface that has been developed, implemented as web application. The main technologies used for this purpose have been PHP, HTML, CSS and JavaScript.

Likewise, a webpage has been implemented for queries in the own lab intranet, where users can see their own consumptions and the fridge and pantry products stock.

Finally, the system has been installed in the fridge and pantry room, resulting operative for users. For this purpose, a clamping system has been designed and printed in 3D, to provide stability and make it easy for users.

TFG: Diseño e implementación de una interfaz gráfica para gestión de una red de sensores inalámbrica

Screen Shot 2017-07-11 at 6.38.55 PM

Las redes de sensores inalámbricas constituyen una nueva tecnología que se encuentra en un momento de desarrollo creciente. Este tipo de redes están formadas por varios nodos autónomos con capacidad de comunicación inalámbrica. Dichos nodos son capaces de monitorizar y muestrear varios parámetros físicos del entorno en el que se encuentran, procesar la información obtenida y comunicarse con otros nodos para tomar decisiones.

Debido al desarrollo de esta tecnología, se han encontrado varias necesidades entre las que se encuentran la gestión de las redes, su mantenimiento o la realización de pruebas. Es por ello que en el mercado han surgido varias alternativas para cubrir estas necesidades.

En el grupo de investigación del B105 Electronic Systems Lab del Departamento de Ingeniería Electrónica se ha desarrollado un banco de pruebas que permite comprobar, de una manera eficiente, el comportamiento de las redes de sensores ante distintas configuraciones de protocolos de comunicación y de los nodos. Para poder utilizar este sistema de manera sencilla se necesita una interfaz gráfica.

Este proyecto nace con la idea de cubrir esa necesidad, con el reto añadido de desarrollarla de manera que cumpla las características de fiabilidad, comodidad, flexibilidad y escalabilidad. También se pretende que esta interfaz sea lo más genérica posible. La interfaz se tendrá que comunicar con la red de sensores para configurar parámetros de los nodos y para solicitar datos a los mismos. Estos datos se tendrán que guardar y mostrar adecuadamente al usuario.

Para la realización de la interfaz se usará el entorno de programación Visual Studio en su versión de C#. Este contiene todas las herramientas y utilidades necesarias para diseñar e desarrollar interfaces de una manera rápida y sencilla, comunicarse con otros dispositivos y almacenar datos en ficheros y bases de datos.

También se diseñará e implementará las funciones necesarias para el correcto envío de datos a la interfaz por parte de la red de sensores. Esta tarea será realizada por un nodo pasarela, que actúa de intermediario entre los miembros de la red y el PC.

TFG: Desarrollo e implementación de un sistema electrónico para medir y caracterizar el consumo de sistemas empotrados


Un reloj digital, un teléfono inteligente, una pulsera electrónica y un sensor inalámbrico son algunos ejemplos de sistemas empotrados. Es fácil observar que este tipo de dispositivos juegan un papel muy importante en la sociedad actual.

Tras analizar con detalle este tipo de dispositivos nos damos cuenta de que en numerosas ocasiones son autónomos desde un punto de vista energético, es decir, se alimentan a través de baterías o pilas. En estos casos, será de gran interés para el diseñador obtener un perfil de consumo del dispositivo con la finalidad de poder estimar un tiempo de vida del mismo.

Realizar este proceso de caracterización en ocasiones no será para nada trivial, incrementándose considerablemente cuando trabajemos con dispositivos cuyo comportamiento no sea constante a lo largo del tiempo, pudiendo existir grandes diferencias de consumo entre un momento y otro como, por ejemplo, en las redes de sensores inalámbricos.

Ante la inexistencia de herramientas comerciales económicas que nos permitan caracterizar un dispositivo similar a los presentados anteriormente, nos propondremos realizar con este proyecto una herramienta de bajo coste con dicha funcionalidad. Para ello, diseñaremos, por un lado, un dispositivo hardware que nos permitirá medir el consumo de un tercero de forma fiable y, por otro, una herramienta software a través del cual el usuario podrá acceder a los datos adquiridos y procesarlos según considere, obteniendo la información relevante para el análisis del consumo.

Entre las restricciones a las que tendremos que hacer frente destacamos lo que se conoce como tensión de Burden. La tensión de Burden se define como la tensión que cae en el instrumento de medida por el mero hecho de medir. Fruto de esta restricción, será necesario incluir en el sistema, un mecanismo de regulación que cambie el estado del sistema de forma que, en ningún caso, la caída de tensión en bornes de nuestro dispositivo supere los 0,1 V.

tensiondeburdenLimitación de la tensión de Burden.


Adicionalmente al prototipo hardware, se desarrolló una interfaz que nos permitirá trabajar con el perfil de consumo obtenido durante el proceso de adquisición, facilitando el análisis de los datos.interfaz


Interfaz de usuario

Entre las funcionalidades incluidas en la aplicación destacamos: el panel de representación, que nos permitirá hacer zoom en un intervalo de tiempo específico; el panel de datos, donde se mostrarán los valores de interés del sistema (valor mínimo, máximo y medio) y el panel de configuración de umbrales, que nos permitirá conocer cuánto tiempo ha permanecido el sistema un una banda acotada de consumo.

MDC montaje

Montaje real del sistema completo



I Foro Internacional de Género y Ciberseguridad


The Instituto Nacional de Ciberseguridad (INCIBE), in cooperation with the Organización de Estados Americanos (OEA), organized the l “I Foro Internacional de Género y Ciberseguridad: creando un mundo digital más inclusivo v1.0”, in the Auditorio Ciudad de León, on June 5th and 6th, 2017. Representants of 21 countries were present on this Forum where conferences and working groups performed a quite important task.

Main Forum objectives were the following ones:

  • Promote information exchange and the development of knowledge on gender and cibersecurity
  • Analyce current situation and the gender problems both at national and international levels in relation to the cibersecurity field
  • To debate on the main problems in gender violence over the digital world

Among the different activities, the B105 participated in the Working Group 1: “Mejores prácticas para sensibilizar a las jóvenes en la importancia del mundo digital, especial referencia a la Ciberseguridad, carreras tecnológicas, y medios de comunicación” where our collegue Octavio worked as member of the group.

More information on the web


DEPERITA – An intrusion alarm system to improve safety in road work zones



Road traffic accidents are one of the main causes of death and disability worldwide. Workers responsible for maintaining and repairing roadways are especially prone to suffer these events, given their exceptional exposure to traffic.

The goal of this project is to develop an intrusion alarm system to improve safety in road work zones. It consists of several nodes equipped with ultrasonic sensors to detect possible vehicle breaches in the perimeter. In addition, we will develop individual warning devices to be worn by every worker that will be wirelessly connected to the detector nodes. This way, in case of a vehicle invading the work zone, each worker can be effectively and timely warned in order to make it to safety.

This project emerged from Jose Martin‘s MSc thesis, and later has been funded by the 2015 AEESD public call. Its official details are as follows:

Title: DEPERITA – DEtección PERImeTral para el Aviso a trabajadores en obras lineales
Code: TSI-100503-2015-0039
Duration: October 2015 – December 2017
Partners: Valoriza Infraestructuras and Universidad Politécnica de Madrid (B105-ESL)
Financing entity: Ministerio de Industria, Energía y Turismo (AEESD 2015)


LÁZARO: Development of an innovative ICT system for the detection of architectural barriers and monitoring based on augmented reality



LÁZARO is a project carried out alongside Valoriza Servicios a la Dependencia S.L.U., with the objective of developing a system to automatically detect architectural barriers making use of computer vision and augmented reality. It will integrate the detection provided by sensors and images and the display of an augmented reality layer, together with a warning and checking system for the barriers.

In addition to the first objective, the project pursues another important goal, the development of a wireless sensor network to monitor the living conditions of people with special needs, such as elderly or disabled people. Therefore, the system will result in an integral solution for assisted living facilities and residences, although it can be applied to several other environments.


The project details are as follows:

Title: LÁZARO: Development of an innovative ICT system for the detection of architectural barriers and monitoring based on augmented reality
Duration: 2016-2017
Partners: Valoriza Servicios a la Dependencia S.L.U. and Universidad Politécnica de Madrid
Financing entity: Valoriza Servicios a la Dependencia S.L.U. via CDTI.

Logo CDTI-MINECO con Gill Sans

SENSORIZA – Real time sensor system for meteorological data acquisition, freeze and snow forecast and road conservation, manteinance and security improvement


Weather conditions can be very dangerous and produce most of the accidents in road environments. To reduce the road accidents and to maintain the infrastructure, the goal of this project is to perform a wireless sensor system to obtain the weather conditions of the road in real time in order to predict freeze and snow events.

The system consist on a wireless module in the vehicle which takes the sensors information and stores for further processing.

The B105 Electronic Systems Lab. as a representative of Technical University of Madrid(UPM) participates with Valoriza in this innovative research project. To develop it we have the support of the Industrial Technological Center (CDTI) and the Ministry of Enery, Tourism and the Digital Agenda.


Logo CDTI-MINECO con Gill Sans