Blog

The Twelve of B105 – Brain Patterns

aug18

Para ambientar este caluroso mes tenemos una nueva entrega de …

theTwelveOfB105

En este caso, hemos decidido recuperar la temática relacionada con la bioingeniería, campo que ya introdujimos en el cartel de Abril de 2018 con las Redes Neuronales Inalámbricas.

Este post está relacionado con el Trabajo Fin de Máster finalizado titulado “Diseño de estrategias para la detección de potenciales de acción en acciones basadas en movimientos”.

El objetivo de este trabajo es obtener patrones que nos permitan saber cuando alguien ha pensado en moverse, sin haber realizado el movimiento. Tras un largo trabajo para conocer este tipo de señales, llegamos a la conclusión de que era necesario un filtrado que permitiera utilizar sólo las señales de la banda de frecuencia relacionada con los movimientos, a saber, la banda alfa y la banda beta de la imagen (8-30 Hz aproximadamente).

stages

También concluimos que no sería suficiente con un procesado único, sino que el algoritmo debería estar formado por un conjunto de características o parámetros obtenidos de manera sencilla, de tal forma que la suma de varias de éstas nos permitiera saber si la persona quería moverse o no.

Se implementaron varios algoritmos que agrupaban ciertas características de las señales y después se probaron sobre unas señales obtenidas de una base de datos pública, de diferentes personas.

Ampliando el número de personas que se utilizaron en el TFM nombrado anteriormente, se ha llegado a tener un acierto de entre el 50 y el 80 %. Al ser este porcentaje muy variable y bajo para lo que nosotros queremos, hemos decidido proceder de la siguiente forma:

– Obtener nuestras propias señales para controlar totalmente el entorno.
– Implementar otros algoritmos que permiten detectar patrones, lo que supone aumentar la complejidad.

Para conocer el resto de temáticas del resto de meses, no dudéis en consultar la siguiente página.

El mes que viene se publicaran las ofertas de TFG/TFM/PFC para el siguiente curso, ¡Estad atentos! ¡Os esperamos!

Becas Cátedra BQ 2018/2019

Logo_Cátedra_RGB

Un curso más, y cumplimos 5 años, continúa la colaboración del B105 con BQ. Dentro de las actividades de la cátedra BQ se contempla el establecimiento de un programa de becas en áreas de interés para la empresa y que complementen el proceso formativo de los estudiantes.

Por lo tanto, se lanza esta convocatoria de becas para el curso académico 2018/2019 (ver documento adjunto).

C20182019-ConvocatoriaBecasCBQ

Los interesados en alguna de las becas deberán enviar un correo electrónico a la dirección  catedra.bq.upm@bq.com con la siguiente información:

  • Asunto: [Becas Cátedra  BQ].
  • Curriculum Vitae.
  • Beca/s en las que estás interesado y la motivación.
  • Situación actual del candidato: curso, asignaturas pendientes, limitaciones de horarios, interés en realizar TFG, TFM, Prácticas en Empresa, etc.

Información de interés:

  • Fecha límite de recepción de CV: 14 de Septiembre de 2018.
  • Fecha de inicio de las becas: Preferiblemente 24 de Septiembre de 2018.

Os esperamos!

TFM: DESIGN AND IMPLEMENTATION OF NODES FOR CONTINUOUS MONITORING OF STRUCTURES BASED ON MEMS ACCELEROMETERS AND POWERED BY SOLAR ENERGY

Sin título

Monitoring of large structures, such as buildings or bridges, is a very important task and must be done constantly, due to the danger that can lead to a sudden failure of these. These failures can cause a large number of damages, not only material, but also human losses.

This project aims to design and implement a system that is capable of monitoring the vibrations of a certain place and must also be energetically self-sufficient. For this, the main purpose is to implement a node of this type based on a MEMS accelerometer and powered by solar energy and batteries. The developed monitoring node must be a low power system because it must be able to work autonomously for long periods of time. This will be achieved through the implementation of a power system based on an external battery recharged by solar energy. For the measurement part, accelerometer data will be collected every so often and stored on an SD card for later reference.

The B105 Laboratory has several types of PCBs that have different modules needed to carry out this project (accelerometers, battery management, SD card …). For the development of the hardware it was decided to take advantage of the PCBs already designed. The modules and components to be used were chosen and subsequently welded with two different techniques: manual and by oven.

The software was programmed in C language and it was decided to perform 3 different implementations: first, software was designed on bare machine to check the correct functioning of the measurement module; Later software with operating system was developed to optimize the performance of the system; Finally, tests were performed measuring vibrations with the accelerometer and stored on the SD card to obtain final results and conclusions.

TFG: Design and implementation of an access control system based on NFC technology

post

 

The B105 Electronic Systems Lab has an electronic access system in its door based on a Radio Frequency Identification (RFID) card reader. This system was developed more than 12 years ago so the technology it uses is obsolete and several of its features are out of use. The development of this degree project is intended to implement an alternative to this access control system based on Near Field Communication (NFC) technology.

The RFID system requires the use of physical cards, which are easily misplaced and force the user to carry them around with him/her to enter the laboratory. To solve this problem, the new system allows the users to open the door using their smartphone. This makes it even easier to enter the laboratory, as users always have their mobile phone with them. In addition, users are assigned specific entry times, providing greater security and a better access control to the laboratory.

There is an equipment reservation management service in the laboratory that already has a database of members, an application and an administration website. Therefore, these resources have been used to facilitate the implementation of the new system and avoid data replication on the server.

Once the system has been implemented, any user who is registered in the system and has certain permissions can open the door by bringing their mobile phone closer to the reader. To achieve this, the existing access system has been built on and relevant technologies have been studied.

The development and implementation work has been divided into three blocks: the NFC reader, the application and the server. The reader, integrated into the door opening system, acts as an intermediary between the application and the server. On the other hand, the application only has to emulate the access card and send the entry request. Then, the server evaluates this request checking the user information and its database and it sends a response to the reader. Depending on the message received, the reader opens the door or not and finally informs the user of the decision.

TFG: Design and implementation of a network of low-resources wireless nodes for the decoding and the reproduction of audio

fotoplacacompleta (1)

In recent years, the consumption of multimedia content on the Internet has increased substantially. However, there are devices without Internet access that would be interesting if they could play this content, such as loudspeakers. It would also add value if it were a low-resource device, which would have a direct impact on its cost. This TFG aimed to design and implement a network of low-resources wireless nodes for the reception, decoding and playback of MP3 audio within a multipoint communications network.

This work continued the development of the system carried out in a previous TFG, which is described on this post. The system consisted of a transmitter located into a computer and several receivers, each one of them located into a esp8266 chip. The transmitter sent codified audio to a multicast direction, which could be received the receptor chips connected to his same Wi-Fi network, to be decoded and reproduced.

The first objective was to improve the reproduction audio quality of the system. To achieve this, a MP3 decoder chip module was integrated to work as a slave system controlled by the esp8266. After that, audio tests were then carried out to check the similarity between sent and received audio.

The second objective was to provide configurability to the system. A software tool was developed, which set the esp8266 as an access point. If the user connected to it, a configuration website was deployed. This site had a form where the user may write the SSID and the password of a Wi-Fi network. After that, the esp8266 connected to that Wi-Fi network, and started the codified audio reception.

The last objective of this TFG was the design and the implementation of a hardware prototype of the node which included the two modules. For this purpose, a printed circuit board has been designed and manufactured, consisting of the necessary elements to connect all the modules of the system. The resulting PCB and the the final version of the node, connected with the esp8266, can be seen in the pictures below.

fotoplacatop

fotoplacacompleta (1)

The Twelve of B105 – Customized Foosball

jul18

Llegan las vacaciones, y qué mejor manera de empezar que disfrutando de un nuevo número de…

theTwelveOfB105

Y volvemos nada menos que con uno de los iconos del grupo: el futbolín. Tras una década con nosotros, este ya indispensable miembro del laboratorio ha sido objeto de múltiples mejoras y experimentos (véase su historia).

Mucho tiempo ha pasado desde el primer (y ahora arcaico) sistema para contabilizar los goles. Algunas de las últimas mejoras son:

Red inalámbrica de sensores/actuadores en el futbolín.  Las funcionalidades soportadas por esta red incluyen la gestión de la iluminación, detección de goles, lectura de huellas dactilares (ver TFG asociado), medición de la velocidad de la bola, etc.

Nuevas funcionalidades en la Raspberry Pi. Además del control de la pantalla táctil, esta plataforma actúa como nodo pasarela de la red de sensores/actuadores, registra las estadísticas de jugadores y equipos, e incluso envía notificaciones de los resultados a Slack y Twitter. Por otro lado, incorporamos una cámara para grabar las últimas jugadas, evitando así acaloradas discusiones.

Enlace con otros sistemas del AMIB105 (Ambient Intelligence). Periódicamente se transmite información de estadísticas de juego y replays.

Futbolín -Esquema (2)

Y aquí termina nuestro número de julio. Mientras esperáis al mes que viene, podéis echar un ojo a temáticas anteriores en el siguiente enlace.

¡Hasta el mes que viene!

 

 

TFG: DESIGN AND IMPLEMENTATION OF AN ELECTRICAL STIMULATOR APPLICABLE TO MOTOR NERVES

neurona-activa

The augmentation in the number of risk situations and accidents has caused an increase in the number of spinal cord injuries. These injuries cause plexias and paralysis of the different members of the affected person. This problem has made it necessary to start looking for possible therapies to enhance the lives of patients. One of these solutions is Functional Electrical Stimulation (FES). FES is a technique based on the use of electrical stimulation of the motor nerves in order to generate a functional movement such as walking or picking up an object. This technique involves a series of stimulation parameters that are necessary to control: the stimulation amplitude, the stimulation frequency, the pulse width that composes the stimulation pattern and the waveform of the signal. The objective of this End-of-Degree Project was the development of a platform that allows the electrical stimulation of the motor nerves and the control of the stimulation parameters.

The device designed in this project is constituted by a hardware part and a software part. The stimulator is composed of a series of modules: amplifier module, signal generation module and human-device interface. The signal generation module allows us to control the stimulation parameters through the designed software. Additionally, it is necessary to design an amplification module so that the signals generated have the voltage and current levels necessary for stimulation. The power supply module is responsible for the power supply of the amplifier module and the signal generation module. The interface between the device and the user is based on surface electrodes connected to the output of the amplifier module. The different modules and their components are implemented on a printed circuit board (PCB) that will support and join the modules.

The future of functional electrical stimulation is the creation of closed systems to control the stimulation parameters according to the position of the muscles. Two possible routes can be taken: the use of sensors such as accelerometers and the creation of brain-personal interfaces.

TFM: Design, implementation and testing of controllers for USB 2.0 communication between a software-defined radio system and a PC

The hardware platforms used in this work. Our custom designed PCB, at the center of the image, acts as an interfacing platform.

Massive and rapidly increasing use of wireless devices is raising concerns about eventual saturation of the available spectrum in wireless communications, known as the spectrum scarcity problem. This issue is especially relevant for power- and resource-constrained devices, even more when considering the largely variable and adverse environmental conditions radio channels are usually subject to.  Considering the case of a network of sensor nodes, a smart approach to face this problem is the use of Cognitive Wireless Sensor Networks (CWSNs), which consist in networks capable of modifying their communication parameters depending on the environmental conditions.

One of the ongoing research lines of the B105 Electronic Systems Lab focuses on the development of low-power CWSNs by designing sensor nodes using a Software-Defined Radio system (SDR). Specifically, an architecture based on the Atmel AT86RF215 transceiver and the SmartFusion2 System-on-Chip (SoC) is used to carry out certain cognitive tasks.

The specific objective of this project was to implement communication between the aforementioned elements and a personal computer (PC). To achieve that, a Printed Circuit Board (PCB) was developed to serve as an interface platform between the different hardware elements in the system. Then, the controllers required to manage communication between the transceiver, which acts as data source, and the PC, which is the receiver, are implemented on the FPGA embedded in the SmartFusion2 SoC.

For the successful realization of this project it was necessary to carry out both hardware and software development tasks. In addition, the programming languages C and VHDL were used, as well as the communication standard protocols Serial Peripheral Interface (SPI) and Low Voltage Differential Signaling (LVDS).